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Myth #1

You need to know quantum mechanics
to understand quantum computing.
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Myth #2
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NP-complete problems by trying all
possible solutions at once.
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problems faster using quantum effects
like superposition and entanglement.
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Myth #4

Quantum computers can break almost
all of the public-key cryptography we
use on the internet today.
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Myth #6

Quantum computers can
help us create new drugs and
cheaper fertilizer.
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Myth #7
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solve climate change.
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Parallel class at BU Physics:

This class might not be for you, if ,
PY 536: Quantum Computing

Instructor: Anushya Chandran

Time: Tue/Thu 11am - 12.15pm
® you want to learn how to build a quantum computer Location: SCI B58

® you want to properly learn quantum mechanics




What you will get out of this class

® You will learn the basics of quantum information and computation

® You will learn important quantum algorithms and protocols

® You will get an idea where the field is at today, and where it’s headed

® You will know enough material to get involved in research



Logistics

® Time: Tuesday and Thursday (5pm - 6.15pm)
from 09/02 to 12/10. The lectures will not be recorded.

® Location: CDS 265 (665 Comm Ave, Center for Computing & Data Sciences)
® Office hours: By appointment (CDS 1037)

® Important sites: Piazza and Gradescope (please sign up!)

® Course website: http://sccl.bu.edu/poremba/courses/index.html

If you haven't registered yet, please do!

Or, e-mail me at poremba@bu.edu if you
want to receive updates.



https://www.bu.edu/classrooms/classroom/cds-265/
http://scc1.bu.edu/poremba/courses/index.html
mailto:poremba@bu.edu

Evaluation

® 25% Homework:

4 problem sets in total (bi-weekly)

Posted every other Tuesday on Piazza. Homework Midterm Exam

% 25%
Due Tuesday, two weeks later, 11.59pm on Gradescope eok

(One token for a 48h extension, no questions asked)

Scribe
notes
10%

® 25% Midterm Exam:
Final class project
In-class (closed book) on Thursday, October 23rd. 40%
® 10% Scribe Notes:
Type up LaTeX notes for one of the classes (due 11.59pm the day before the next class)
® 40% Final Class Project:

Prepare a 15 min presentation & written report (5-10 pages) on a selected topic.



Course policy

e Collaboration on homework problems is
permitted and encouraged, but limited to
groups of at most two students.

e You are free to work out the answers
together. But you must write up the
solutions in your own words.

e Do not copy solutions and do not use Al
tools to solve your homework sets

e You have to acknowledge any resources you
used for your assignments, especially for

your final class project Check the website for academic policy at BU.



Worksheets

® /4 practice worksheets
(bi-weekly, during off-weeks)

® These will not be graded and are meant to
help you practice/review material.

® Posted every other Tuesday on the website.
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CS 599 P1: Introduction to Quantum Computati Boston University
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PRACTICE WORKSHEET #1

This is a practice worksheet—it will not be graded and is meant to refresh your memory of complex
numbers and linear algebra. 1 strongly encourage you to work through these problems by yourself, ideally
by Tuesday, September 9th—before the first homework assignment is out.

Problem 1 (Complex numbers). A complex number z € Cis of the form = = a | bi where a,b ¢ Rand
i is the imaginary unit with i2 = 1. Tlere, a — Re(z) denotes the real part of z, and b — Im(z) denotes
the imaginary part of z. Complex numbers have the following key properties:

* Addition: (a | bi) | (c 1 di)=(alc)| (b1 d)i

+ Multiplication: (a | bi)(c | di) = (ac  bd) | (ad | be)i

+ Complex conjugate: = —a i

+ Modulus: || = vaZ | 17

 Unit circle: Complex numbers with |z| = 1 lie on the unit circle (see Figure 1).

« Rotations: Multiplication by i rotates a point by 90° counterclockwise on the complex plane, whereas

multiplication by 1 a point reflects across the origin.
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Figure 1: Any complex number = ¢ € can be written as z — a | bi, and can thus be represented as a point
on the complex plane. Here, the horizontal axis represents the real part, and the vertical axis represents the
imaginary part. Whenever = has modulus |2| = 1, it lies on the unit circle, as pictured above.
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Useful resources

There is no official textbook, but you I also recommend these
might find these books useful! lecture notes by John Watrous:

An Introduction to Understanding
Quantum Introduction to Classical and Quantum Computing Quantum Information

Computation Quantum Computing LLP KATE RATHOND LAFLAM and Computation
o A Course on the Theory of Quantum Computing.
and Quantum
. Informatxon /

John Watrous

F<

Thomas G. Wong

You can find links to all of these resources on the course website!
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Why learn quantum computing?

® Model of computation, based on our most

most successful and complete theory of
physics—quantum mechanics.

® It’s here to stay! There is a lot of recent

exciting experimental progress in
building actual quantum hardware.

® Thereis alot of opportunity to get

involved in cutting-edge research,
especially for computer scientists.

Home >Computing

Google Launches $5 Million XPRIZE to Find Real
World Uses for Quantum Computers

Quantum computers are fast, but are they any good?

By Ryon Whitwam March 5, 2024 f X [*]




Where did it all begin?



The origins of quantum computing

The simplest possible quanturm mechanical

system has two degrees of freedom.
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The origins of quantum computing

The simplest possible quanturm mechanical

system has two degrees of freedom.

Electron (D
spin

What about a system of N spins?

Richard Feynman (1981)

' ‘ ' ‘ ' ‘ ' “..Nature isn’t classical, damnit,
WD WD WD WV W W VD L and if you want to make a
. , , , . , , . simulation of nature, youd better
make it quantum mechanical.”

This system is described by 2V possible states!




Quantum computing: the early days

® 1980s: Feynman (along with David Deutsch,

Paul Benioff, Yuri Manin) proposed the
notion of a “quantum computer”.
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Quantum computing: the early days

1980s: Feynman (along with David Deutsch,

Paul Benioff, Yuri Manin) proposed the
notion of a “quantum computer”,

1985: David Deutsch found a non-physics

problem that could be solved faster on a
quantum computer than on any classical
computer (by a constant factor)

1992-1994: Bernstein and Vazirani (and later

Dan Simon) discovered the first problems that
could be solved exponentially faster!
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Quantum computing: the early days

1980s: Feynman (along with David Deutsch,

Paul Benioff, Yuri Manin) proposed the
notion of a “quantum computer”,

1985: David Deutsch found a non-physics

problem that could be solved faster on a
quantum computer than on any classical
computer (by a constant factor)

1992-1994: Bernstein and Vazirani (and later

Dan Simon) discovered the first problems that
could be solved exponentially faster!

Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer*

Peter W. Shor'

Abstract

AMS subject classifications: 81P10, 11Y05, 68Qf

7
<

1994: Peter Shor discovered a
quantum factoring algorithm.

“These algorithms take a number of
steps polynomial in the input size, for
example, the number of digits of the
integer to be factored.”
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Why Shor’s algorithm matters

Can you factor this integer?

51=3 % 17

How about this one?

1487342080 = 15904 % 93520

For an n-digit number, this problem is believed to

computationally intractable for current computers.

The best known algorithms require a runtime which

is superpolynomial in n.

The security of the RSA
cryptosystem relies on the
hardness of factoring!

It is the most widely used
public-key encryption
scheme that we use on the
internet today!
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Image (Google): Quantum error correction below the surface
code threshold, Nature (2025).
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The road ahead

Our understanding of what quantum computers can do is still very limited.

Image: Google
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What are quantum computers good for?

So far we found several interesting examples of quantum advantage:

e Quantum algorithms for algebraic problems, e.g.
factoring, discrete logarithm, hidden subgroup problem

e Quantum algorithms for unstructured search, e.g. %

Grover search, quantum walks

e Quantum algorithms for simulating physics and chemistry
(i.e., Feynman’s original dream)

e Quantum algorithms in optimization and machine learning, e.g. _
for constrained satisfaction problems, SDPs, topological data analysis f



Overview of the class

® (Weeks 1-3) Basics of quantum information and quantum computation

® (Weeks 4-8) Quantum gates & quantum circuits, fundamental quantum
algorithms, and quantum complexity theory

® (Weeks 9-10) Mixed-state formalism, noisy quantum systems,

quantum error correction and quantum fault-tolerance

® (Weeks 11-14) Quantum cryptography & selected advanced topics

® (Week 15) Final student presentations
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Covered
in the
midterm
exam!



Quantum @ BU slack channel

Join to stay updated on quantum-related events at BU!

To sign up, you can find an invitation link on my website.

@ Search Quantum @ BU

Quantum @ BU ~ # all-quantum-bu
% Quantum @ BU
% 1workspace

Your workspace is currently on Slack’s
Pro Trial. Learn more

@ Messages (% Company Handbook +

Everyone’s all here in 1t all-quantum-bu

Share announcements and updates about company news, upcoming even

:e’ \t(ourbpngiil ILaJSts t:rough Add company Personalize a Invite teammates
ember . rade now
F i handbook welcome message Add your whole team
Canvas template Record a short video clip
Invite people to Quantum @ BU
Onboarding
Preferences
Tools & settings - > ‘
A =
" —
Open the desktop app e .
Get the mobile app Resources i

Sign out




Next time: The Qubit




