
CS 599 P1: Introduction to Quantum Computation Boston University, Fall 2025
Instructor: Alexander Poremba Scribe: Ethan Cappelleri

LECTURE #10: QUANTUM FOURIER TRANSFORM

In this lecture, we introduce the Quantum Fourier Transform (QFT). The QFT is a generalization of
the Hadamard transform and plays a central role in several quantum algorithms, including Shor’s factoring
algorithm. This lecture will provide us with the necessary toolkit to move toward algorithms that provide
genuine computational speedups without relying on oracle models.

1 From the Hadamard Transform to the Fourier Transform

The Hadamard gate is one of the simplest yet most important quantum gates: for x ∈ {0, 1}, we have

H|x⟩ = 1√
2

∑
y∈{0,1}

(−1)x·y|y⟩.

Intuitively, H maps the computational basis states |0⟩ and |1⟩ to equal superpositions:

H|0⟩ = |0⟩+ |1⟩√
2

= |+⟩, H|1⟩ = |0⟩ − |1⟩√
2

= |−⟩.

As we saw in previous lectures, the relative phase encodes information about the original state.
Mathematically, the Hadamard gate can be interpreted as the Fourier transform over the group Z2; this

is the set {0, 1} which is equipped with a group operation corresponding to addition modulo 2. Note Z2

forms an abelian group, and H acts as its character transform, mapping group elements x ∈ Z2 to linear
combinations of characters χy(x) = (−1)x·y. As we will see, this perspective becomes especially useful
when generalizing the notion of a Hadamard transform to multiple qubits or larger groups.

Multi-qubit Hadamard. For n qubits, the Hadamard gate extends naturally as the tensor product H⊗n,
acting independently on each of the qubits:

H⊗n|x⟩ = 1√
2n

∑
y∈{0,1}n

(−1)⟨x,y⟩|y⟩,

where ⟨x, y⟩ = x1y1 ⊕ x2y2 ⊕ · · · ⊕ xnyn is the inner product modulo 2. This transformation turns
computational basis states into equal superpositions, with relative phases determined by the bitwise inner
product. In other words, H⊗n performs a discrete Fourier transform over the group (Z2)

n.
This property is extremely useful in quantum algorithms: it allows one to access information stored in

the phases of a quantum state, rather than just its amplitudes. In many algorithms, including Simon’s and
Shor’s, this phase information is the key to extracting hidden structure efficiently. The Quantum Fourier
Transform will provide us with the right tool to access phase information in higher-dimensional systems.
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Example: Quantum information in the phase

Consider the single-qubit state

|ψ(θ)⟩ = 1√
2

(
|0⟩+ eiθ |1⟩

)
, θ ∈ [0, 2π).

Measuring in the computational basis yields |0⟩ or |1⟩ with equal probability, giving no information
about θ. However, applying a Hadamard before measurement transforms the state into

H |ψ(θ)⟩ = 1

2

(
(1 + eiθ) |0⟩+ (1− eiθ) |1⟩

)
,

so the measurement probabilities now depend explicitly on θ. This illustrates how we can use the
Hadamard transformation to access important phase information hidden in the amplitudes.

Beyond Qubits: Toward Higher Dimensions. While the Hadamard works for qubits with computational
basis {|0⟩ , |1⟩}, we often encounter higher-dimensional systems (or “qudits”) for N ≥ 2 with basis states

{|0⟩ , |1⟩ , . . . , |N − 1⟩}.

How can we generalize the Hadamard transform to higher-dimensional Hilbert spaces? The answer is the
Quantum Fourier Transform (QFT), which generalizes the Hadamard fromN = 2 to any dimensionN ≥ 2,
operating over the group ZN = {0, 1, . . . , N − 1} with addition modulo N .

2 The Discrete Fourier Transform

Before introducing the Quantum Fourier Transform (QFT), it is useful to recall its classical counterpart,
the Discrete Fourier Transform (DFT). The DFT is a fundamental tool in signal processing, allowing us
to decompose a discrete signal into its constituent frequency components. Intuitively, any discrete signal
in time can be viewed as a sum of periodic oscillations of different frequencies, and the DFT provides a
systematic method to extract these frequencies.

Formally, let f : {0, 1, . . . , N − 1} → C be a discrete signal of length N (say, over N distinct time
steps). The DFT produces a new sequence f̂ : {0, 1, . . . , N − 1} → C defined by

f̂(y) =
1√
N

N−1∑
x=0

f(x) e2πixy/N , y = 0, 1, . . . , N − 1.

Here, e2πixy/N are the complex exponentials that serve as the basis functions of the transform.
From a linear algebra perspective, the DFT can be interpreted as a change of basis in the vector space

CN . The standard basis consists of vectors {e0, e1, . . . , eN−1}, where ex has a 1 in position x and zeros
elsewhere. The DFT changes to the Fourier basis (or “frequency domain”) consisting of vectors

fy =
1√
N

(
1, e2πiy/N , e2πi2y/N , . . . , e2πi(N−1)y/N

)⊤
,

for y = 0, 1, . . . , N − 1. In this basis, the components f̂(y) measure how strongly the corresponding
frequency contributes to the original signal.
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Thus, the DFT provides a compact and elegant way to encode frequency information, a perspective that
generalizes directly to quantum states in the form of the QFT.

The Discrete Fourier Transform

The discrete Fourier transforma allows us to decompose a discrete signal (say, discrete time steps) as a
sum of periodic oscillations across different frequencies which make up the original signal. This can be
viewed as a change of basis from the time domain to the frequence domain, as in the figure below:b

aFor some intuition, see this 3Blue1Brown video for how to visualize the Fourier transform:
https://www.youtube.com/watch?v=spUNpyF58BY

bImage credit: This figure was taken from the following source:
https://www.nti-audio.com/en/support/know-how/fast-fourier-transform-fft

Roots of Unity. A primitive N th root of unity is defined as

ωN = e2πi/N .

This complex number satisfies ωN
N = 1 and generates all other N th roots of unity through its powers:

1, ωN , ω
2
N , . . . , ω

N−1
N .

These roots are the solutions to the polynomial equation zN = 1 in the complex plane. They lie equally
spaced around the unit circle, forming the vertices of a regularN -gon. Under multiplication, the set of roots

{1, ωN , ω
2
N , . . . , ω

N−1
N }

forms a cyclic group of order N , with ωN as a generator.
Roots of unity play a central role in Fourier analysis because the complex exponentials e2πixy/N = ωxy

N

appear in both the classical discrete Fourier transform and the quantum Fourier transform. They serve as
the “basis functions” in which signals or quantum states are decomposed, allowing frequency components
or phase information to be extracted systematically.
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Example: 8th roots of unity

Let N = 8. Then, the 8th roots of unity ωk
8 = e2πi

k
8 for k = 0, 1, . . . , 7 partition the unit sphere on the

complex plan into 8 equally spaced rotations in the complex plane.

ℜ
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Matrix Form of the DFT. Recall that a discrete signal f : {0, 1, . . . , N − 1} → C can be thought of as a
complex-valued vector in CN with

f =


f(0)
f(1)

...
f(N − 1)

 .

Therefore, the DFT can be represented as a unitary change of basis FTN : CN → CN acting on vectors
which over basis vectors labeled by ZN . Its entries are

(FTN )y,x =
1√
N
ωxy
N =

1√
N
e2πixy/N , x, y = 0, 1, . . . , N − 1,

where ωN = e2πi/N is a primitive N th root of unity. In matrix form, this gives

FTN =
1√
N


1 1 1 . . . 1
1 ω ω2 . . . ωN−1

1 ω2 ω4 . . . ω2(N−1)

...
...

...
. . .

...
1 ωN−1 ω2(N−1) . . . ω(N−1)(N−1)

 .

Applying FTN to a signal f explicitly expresses the DFT as a change of basis:

f̂ = FTNf.
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where the Fourier transform of f is once again a complex vector f̂ ∈ CN with

f̂ =


f̂(0)

f̂(1)
...

f̂(N − 1)

 .

For N = 2, this reduces to the familiar single-qubit Hadamard gate:

FT2 =
1√
2

(
1 1
1 ω2

)
=

1√
2

(
1 1
1 −1

)
,

where ω2 = −1. This highlights the connection between the DFT and the Hadamard transform: both are
unitary changes of basis, with F2 performing a Fourier transform over Z2.

3 Quantum Fourier Transform

The Quantum Fourier Transform (QFT) is the quantum analogue of the classical discrete Fourier transform.
The QFT is a unitary operation acting on computational basis states |x⟩ as

QFTN |x⟩ = 1√
N

N−1∑
y=0

e2πixy/N |y⟩, x = 0, 1, . . . , N − 1.

By linearity, the QFT extends naturally to any quantum state |ψ⟩ ∈ CN as follows:

|ψ⟩ =
N−1∑
x=0

αx|x⟩ 7→ QFTN |ψ⟩ =
N−1∑
y=0

α̂y|y⟩, where α̂y =
1√
N

N−1∑
x=0

αx e
2πixy/N .

Note that we can compactly represent the roots of unity as ωN = e2πi/N so that for x, y ∈ ZN :

ωxy
N = e2πixy/N .

Intuitively, the QFT maps the amplitudes αx in the computational basis to new amplitudes α̂y in the Fourier
basis. This change of basis is what allows quantum algorithms to extract periodicity and phase informa-
tion efficiently. It is straightforward to verify that QFTN is unitary operation; this requires the following
orthogonality property of the Fourier characters over ZN :

Fact: Orthogonality of Fourier characters

For any integer N ≥ 2, the roots of unity ωN = e2πi/N give rise to so-called Fourier characters
χy(x) = ωx·y

N ∈ C which satisfy the following orthogonality property:∑
y∈ZN

ωx·y
N · ω−x′·y

N = N · δx,x′ , for all x, x′ ∈ ZN .

Here, δx,x′ is the Kronecker delta which is equal to 1, if x = x′, and equal to 0, if x ̸= x′.

The unitarity of the Fourier transform ensures that inner products between vectors are preserved, which
makes it a valid change of basis. Moreover, unitarity also ensures that the transformation is reversible, a key
requirement for quantum computation.
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4 Quantum Circuit Construction

In practice, we often restrict to N = 2n for the quantum Fourier transform. This simplifies both the analysis
and the implementation. In this case, the computational basis states are labeled as

|0⟩ , |1⟩ , . . . , |2n − 1⟩ .

Each integer y ∈ {0, 1, . . . , 2n − 1} can be expressed as an n-bit binary string

y = yn−1yn−2 . . . y0, with y =
n−1∑
k=0

yk2
k, yk ∈ {0, 1}.

4.1 Action of the QFT on a basis state

Applying the QFT to a basis state |x⟩, with x ∈ Z2n , gives

|x⟩ 7→ QFTN |x⟩ = 1√
2n

∑
y∈Z2n

ωx·y
2n |y⟩ , ω2n = e2πi/2

n
.

Using the binary decomposition of y, we can rewrite the exponent as

x · y = x ·
n−1∑
k=0

yk2
k,

so that the QFT maps a logical basis state |x⟩ to its Fourier transform via

|x⟩ 7→ QFTN |x⟩ = 1√
2n

∑
y∈Z2n

n−1∏
k=0

ωx·yk2k
2n |yn−1, . . . , y0⟩ .

4.2 Factorization into qubit states

Since each yk ∈ {0, 1}, the sum over y factorizes into independent sums over each qubit:

|x⟩ 7−→ 1√
2n

n−1⊗
k=0

 1∑
yk=0

ωx·yk2k
2n |yk⟩

 .

Next, by introducing the single-qubit rotations as

|zk⟩ =
1√
2

(
|0⟩+ ωx·2k

2n |1⟩
)
, for k = 0, 1, . . . , n− 1.

we can write the output as
|x⟩ 7−→ |zn−1⟩ ⊗ |zn−2⟩ ⊗ · · · ⊗ |z0⟩ .

Notice that for yk = 0 or 1, the amplitude is either 1 or ωx·2k
2n , so each factor is essentially a Hadamard gate

followed by controlled phase rotations, encoding the contribution of higher-order bits of x into the phase.
A more explicit expression using the binary expansion of x as x = xn−1 . . . x0 is

|zk⟩ =
1√
2

(
|0⟩+ e2πi

∑n−1
j=0 xj2

k−j−n

|1⟩
)
,

which clearly shows how the phase for qubit k depends on all higher-order bits xj with j ≤ k.
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4.3 Circuit implementation

This factorization into single-qubit rotation states {|zk⟩} leads to an efficient QFT circuit which is made up
of only single-qubit Hadamard gates and controlled phase rotations:

• Apply a Hadamard gate to the most significant qubit. In quantum circuit notation, this is the gate

H

• For each qubit j, apply controlled rotations with respect to Rk = diag(1, e2πi/2
k
) with

Rk =

(
1 0

0 e2πi/2
k

)
= |0⟩⟨0|+ e2πi/2

k |1⟩⟨1|

from all qubits with higher significance (i.e., k < j), where the controlled-Rk operation is given by

controlled-Rk = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗Rk.

In quantum circuit notation, this is the gate represented by

Rk

• Repeat this for all qubits in order of decreasing significance.

• (Optional:) Apply a bit-reversal at the end to reorder the output qubits into standard binary order.

Quantum circuit construction. Below, is the full quantum circuit for QFT2n .

Quantum circuit: Quantum Fourier Transform over Z2n .

The following quantum circuit on n qubits is an exact and efficient implementation of the quantum
Fourier transform QFT2n . The circuit relies on the previous factorization into single-qubit states and
relies only on single-qubit Hadamard gates and controlled phase rotations:

Circuit complexity. This construction shows that the QFT can be implemented efficiently using O(n2)
gates, and with approximate small-angle rotations, the complexity can be reduced further to O(n logn).
This efficient implementation is central to the success of algorithms like Shor’s factoring algorithm.
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