
CS 599 P1: Introduction to Quantum Computation Boston University, Fall 2025
Instructor: Alexander Poremba Scribe: Logan Grout

LECTURE #13: GROVER’S ALGORITHM

Grover’s algorithm is a celebrated quantum algorithm, discovered by Lov Grover in 1996. It provides a
quadratic speed-up over any classical algorithm for searching an unstructured database or solving a general
unstructured search problem. Although the improvement from O(N) to O(

√
N) might appear modest

compared to the exponential speed-up of Shor’s algorithm, Grover’s method is widely applicable. For
example, suppose that a classical search problem requires 1 billion seconds (≈ 31 years) to solve. Then,
Grover’s quantum algorithm would only require about 9 hours—a dramatic improvement!

Grover’s algorithm forms the basis of numerous quantum subroutines (for example, amplitude amplifi-
cation) and provides the best possible quantum speed-up for black-box search problems.

1 Problem Definition

Grover’s algorithm addresses one of the most fundamental computational tasks: searching for a marked item
in an otherwise unstructured database. This is called the unstructured search problem.

Definition: Unstructured Search Problem

Given (oracle) access to a Boolean function

f : {0, 1, . . . , N − 1} → {0, 1},

with the promise that there exists a unique element x∗ ∈ {0, 1, . . . , N − 1} satisfying f(x∗) = 1, and
f(x) = 0, otherwise, the goal is to find the marked item x∗.

Classical vs Quantum Complexity:

• Classical: In the worst case, a classical algorithm must query f(x) for nearly all N possible inputs
before finding x∗. Therefore, the expected number of oracle calls required is Ω(N).

• Quantum: Grover’s algorithm achieves a quadratic speedup, requiring only O(
√
N) queries to the

quantum oracle Uf . Each query evaluates f(x) coherently across all N possibilities simultaneously
by exploiting quantum superposition and interference.

Question: Where does the oracle f come from?

In most realistic settings, f is not an externally provided black box, but rather a function we can imple-
ment ourselves. Typically, f(x) encodes a computational task we wish to solve, such as checking whether a
candidate solution satisfies certain constraints. Because both classical and quantum algorithms must evaluate
f(x), the total runtime of Grover’s algorithm is meaningful only when evaluating f can be done efficiently

1



— ideally in poly(logN) or poly(n) time, where N = 2n. Importantly, just because we know how to
implement f efficiently, does not mean it is easy to find a desired marked item! See the following example:

Example: Boolean Satisfiability (SAT)

Consider a Boolean formula
φ(x1, x2, . . . , xn)

over n input variables. We wish to find an assignment (x∗1, . . . , x
∗
n) ∈ {0, 1}n that makes the formula

evaluate to true.
This can be viewed as an instance of the unstructured search problem by defining the oracle

f(x) =

{
1, if φ(x) = True,
0, otherwise.

The search space has size N = 2n. Assuming that evaluating φ(x) can be done in polynomial time (in
n), a classical exhaustive search requires O(2n) evaluations, while Grover’s algorithm finds a satisfying
assignment in expected time

O(poly(n)
√
2n) = O(poly(n) 2n/2).

Thus, Grover’s algorithm provides a quadratic improvement over brute-force search, which can be sig-
nificant for moderately large problem instances.

2 Phase Oracle

Before introducing Grover’s algorithm, we must understand how a quantum computer can evaluate a classi-
cal Boolean function in superposition by computing it into the phase via a so-called phase oracle.

n|x⟩
Uf

|x⟩

|y⟩ |y ⊕ f(x)⟩

Figure 1: Standard oracle for f

n|x⟩
Uf

(−1)f(x) |x⟩

|−⟩ |−⟩

Figure 2: Phase oracle for f

In Grover’s algorithm, it is convenient to use the phase oracle, which we can obtain from the standard
oracle Uf by initializing the auxiliary qubit in the state |−⟩ = 1√

2
(|0⟩ − |1⟩). Then, applying Uf gives:

Uf |x⟩ |−⟩ = (−1)f(x) |x⟩ |−⟩ .

The auxiliary qubit is unchanged and can be discarded, resulting in an effective operation

|x⟩ 7→ (−1)f(x) |x⟩ .

For the rest of the lecture, we will assumeN = 2n and use Uf to simply denote the phase oracle and discard
the ancillary |−⟩ qubit. We therefore abuse notation and write

Uf : |x⟩ 7→ (−1)f(x) |x⟩ .

2



3 Grover’s Algorithm

Grover’s algorithm finds the unique marked element x∗ such that f(x∗) = 1 using repeated applications of
two reflections:

1. A reflection about the hyperplane defined by the oracle Uf , which flips the phase of |x∗⟩.

2. A reflection about the uniform superposition state, implemented by the diffusion operator D.

Each iteration amplifies the amplitude of |x∗⟩ while reducing that of all other basis states.

Grover’s Algorithm

1. Initialization: Prepare the n-qubit uniform superposition

|ψ0⟩ = |+n⟩ = 1√
N

N−1∑
x=0

|x⟩ .

2. Oracle Reflection: Apply the phase oracle Uf :

Uf |x⟩ =

{
− |x⟩ , if x = x∗,

|x⟩ , otherwise.

This inverts the sign of the amplitude corresponding to the marked item.

3. Diffusion Reflection: Apply the so-called diffusion operator D with

D = 2 |+n⟩⟨+n| − I

which reflects all amplitudes about their mean, thereby increasing the marked state’s amplitude
and slightly decreasing all others. It performs the ampltidude transformation

αx 7→ 2α− αx, where α =
1

N

N−1∑
x=0

αx.

4. Iteration: Repeat steps 2 and 3 approximately

t ≈ π

4

√
N

times. After these iterations, measuring the state yields x∗ with high probability.

Let us now take a closer look at the Grover iteration works.

3.1 Visual illustration of a single Grover iteration

To visualize Grover’s iteration, consider the following progression of amplitudes:

3



Illustration of the Grover Iteration

1. Start with uniform superposition: |+n⟩ = 1√
N

N−1∑
x=0

|x⟩ .

0 1 2

N
−
3

N
−
2

N
−
1

0

1√
N

x∗ (marked)

Basis states

A
m

pl
itu

de

2. Apply the phase oracle Uf : The marked amplitude flips sign.

0 1 2

N
−
3

N
−
2

N
−
1

0

1√
N

x∗ (marked)

Basis states

A
m

pl
itu

de

3. Apply the diffusion operator D: Reflection about the mean increases the marked amplitude.

0 1 2

N
−
3

N
−
2

N
−
1

0

1√
N

x∗ (marked)

Basis states

A
m

pl
itu

de

4. Repeat: Each iteration of (Uf , D) further increases the amplitude of |x∗⟩. After t iterations:

αx∗ ≈ 2t+ 1√
N

, Pr[measure x∗] ≈ (2t+ 1)2

N
.

Choosing t = O(
√
N) yields a measurement success probability close to 1.

4



3.2 The Diffusion Operator

The diffusion operator acts as a reflection about the uniform superposition:

D = 2 |+n⟩⟨+n| − I.

In the computational basis {|0⟩ , . . . , |N − 1⟩}, we can express it as

D =


2
N − 1 2

N . . . 2
N

2
N

2
N − 1 . . . 2

N
...

...
. . .

...
2
N

2
N . . . 2

N − 1

 .

It performs the transformation

αx 7→ 2α− αx, where α =
1

N

N−1∑
x=0

αx.

Thus, D flips every amplitude about their average value, amplifying those below the mean (including the
marked one after phase inversion). The diffusion operator D can be implemented using the simple unitary
operator A = 2 |0⟩⟨0| − I (which is later interleaved with Hadamards), as shown below.

...
...D = ...

...
...

...

H

A

H

H H

Figure 3: Implementation of the diffusion operator D.

3.3 Quantum Circuit for Grover’s Algorithm

The full quantum circuit for Grover’s algorithm is a direct translation of the iterative procedure we have
already described conceptually. We begin with n qubits initialized to |0⟩⊗n and apply Hadamard gates to
create the uniform superposition |+n⟩. Then, each Grover iteration consists of two main components:

• The phase oracle Uf , which flips the sign of the amplitude corresponding to the marked state x∗.

• The diffusion operator D, which reflects all amplitudes about their average, thereby amplifying the
marked state’s amplitude.

After roughly O(
√
N) repetitions of this sequence, the probability of measuring the marked state ap-

proaches 1. The following circuit illustrates this process:
The repeated (Uf , D) pairs form the Grover iteration block. The number of iterations required depends on
the size of the search spaceN and the number of marked elements. For a single marked item, approximately
⌊π4

√
N⌋ iterations maximize the probability of measuring the correct result. Finally, a measurement in the

computational basis yields the marked element x∗ with high probability.

5



. . .

...
...

. . .

|0⟩ H

Uf D Uf D Uf D

|0⟩ H

Figure 4: Quantum circuit for Grover’s algorithm. Each iteration applies the oracle Uf followed by the
diffusion operator D.

3.4 Geometric Interpretation

Grover’s algorithm can be elegantly understood as a sequence of geometric rotations in a two-dimensional
subspace. Although the search space consists of N = 2n computational basis states, all the action of the
algorithm takes place within the plane spanned by the two orthogonal vectors:

|x∗⟩ , |unmarked⟩ = 1√
N − 1

∑
x̸=x∗

|x⟩ .

By construction, ⟨x∗|unmarked⟩ = 0. The initial uniform superposition can therefore be expressed as

|+n⟩ = 1√
N

|x∗⟩+
√

1− 1

N
|unmarked⟩ .

|unmarked⟩

|x∗⟩

|+n⟩

Uf |+n⟩

DUf |+n⟩

Figure 5: Geometric view of Grover’s iteration as successive reflections about |+n⟩ and |x∗⟩.

Each Grover iteration performs two reflections:

1. Uf reflects the current state about the |unmarked⟩ axis (by flipping the phase of |x∗⟩),

2. D reflects the result about the initial state |+n⟩.

The composition of two reflections yields a rotation by an angle 2θ within the plane span{|x∗⟩ , |unmarked⟩},
where

sin θ =
1√
N
.

6



After t iterations, the state vector has rotated by an angle (2t+ 1)θ toward |x∗⟩, and thus the probability of
measuring the marked state is

Pr[measure x∗] =
∣∣ ⟨x∗|(DUf )

t|+n⟩
∣∣2 = sin2

(
(2t+ 1)θ

)
.

To maximize this probability, we choose
t ≈ π

4

√
N,

which brings the state vector very close to |x∗⟩, ensuring that measurement yields the correct solution with
high probability.

3.5 Multiple marked elements

Grover’s algorithm also extends naturally to the case where there are K marked items:∣∣{x ∈ {0, 1, . . . , N − 1} : f(x) = 1 }
∣∣ = K.

Let |M⟩ denote the uniform superposition over the marked states, and |U⟩ denote that over the unmarked
states. The state of the algorithm again evolves entirely within the two-dimensional subspace span{|M⟩ , |U⟩}.

In this case, the angle of rotation per iteration satisfies

sin θ =

√
K

N
,

and after t iterations, the success probability is

Pr[measured item is marked] = sin2
(
(2t+ 1)θ

)
= sin2

(
(2t+ 1)

√
K

N

)
.

Thus, we require only

O

(√
N

K

)
oracle calls to find a marked element with high probability.

7


	Problem Definition
	Phase Oracle
	Grover’s Algorithm
	Visual illustration of a single Grover iteration
	The Diffusion Operator
	Quantum Circuit for Grover's Algorithm
	Geometric Interpretation
	Multiple marked elements


