CS 599 P1: Introduction to Quantum Computation Boston University, Fall 2025
Instructor: Alexander Poremba Scribe: Logan Grout

LECTURE #13: GROVER’S ALGORITHM

Grover’s algorithm is a celebrated quantum algorithm, discovered by Lov Grover in 1996. It provides a
quadratic speed-up over any classical algorithm for searching an unstructured database or solving a general
unstructured search problem. Although the improvement from O(N) to O(v/N) might appear modest
compared to the exponential speed-up of Shor’s algorithm, Grover’s method is widely applicable. For
example, suppose that a classical search problem requires 1 billion seconds (/= 31 years) to solve. Then,
Grover’s quantum algorithm would only require about 9 hours—a dramatic improvement!

Grover’s algorithm forms the basis of numerous quantum subroutines (for example, amplitude amplifi-
cation) and provides the best possible quantum speed-up for black-box search problems.

1 Problem Definition

Grover’s algorithm addresses one of the most fundamental computational tasks: searching for a marked item
in an otherwise unstructured database. This is called the unstructured search problem.

Definition: Unstructured Search Problem

Given (oracle) access to a Boolean function
f:{0,1,...,N —1} — {0,1},

with the promise that there exists a unique element z* € {0,1,..., N — 1} satisfying f(z*) = 1, and
f(x) = 0, otherwise, the goal is to find the marked item x*.

Classical vs Quantum Complexity:

* Classical: In the worst case, a classical algorithm must query f(x) for nearly all N possible inputs
before finding z*. Therefore, the expected number of oracle calls required is (V).

« Quantum: Grover’s algorithm achieves a quadratic speedup, requiring only O(v/N) queries to the
quantum oracle Uy. Each query evaluates f(x) coherently across all NV possibilities simultaneously
by exploiting quantum superposition and interference.

Question: Where does the oracle f come from?

In most realistic settings, f is not an externally provided black box, but rather a function we can imple-
ment ourselves. Typically, f(z) encodes a computational task we wish to solve, such as checking whether a
candidate solution satisfies certain constraints. Because both classical and quantum algorithms must evaluate
f(x), the total runtime of Grover’s algorithm is meaningful only when evaluating f can be done efficiently

— ideally in poly(log N) or poly(n) time, where N = 2". Importantly, just because we know how to
implement f efficiently, does not mean it is easy to find a desired marked item! See the following example:

Example: Boolean Satisfiability (SAT)

Consider a Boolean formula
o(r1, T2, .., Tp)

over n input variables. We wish to find an assignment (7, ..., z}) € {0,1}" that makes the formula
evaluate to true.
This can be viewed as an instance of the unstructured search problem by defining the oracle

flz) = {1, if o(x) = True,

0, otherwise.

The search space has size N = 2". Assuming that evaluating () can be done in polynomial time (in
n), a classical exhaustive search requires O(2") evaluations, while Grover’s algorithm finds a satisfying
assignment in expected time

O(poly(n)v/2") = O(poly(n) 2"/?).

Thus, Grover’s algorithm provides a quadratic improvement over brute-force search, which can be sig-
nificant for moderately large problem instances.

2 Phase Oracle

Before introducing Grover’s algorithm, we must understand how a quantum computer can evaluate a classi-
cal Boolean function in superposition by computing it into the phase via a so-called phase oracle.

e I e T
Uy Uy

) —— [lvof@) = — 1=

Figure 1: Standard oracle for f Figure 2: Phase oracle for f

In Grover’s algorithm, it is convenient to use the phase oracle, which we can obtain from the standard
oracle Uy by initializing the auxiliary qubit in the state |—) = %(|0> — |1)). Then, applying Uy gives:
Uslz) |=) = (=)@ |2} |-) .
The auxiliary qubit is unchanged and can be discarded, resulting in an effective operation
) = (1)1 [z).

For the rest of the lecture, we will assume N = 2™ and use U to simply denote the phase oracle and discard
the ancillary |—) qubit. We therefore abuse notation and write

Us: |z) = (=1)/@ |z) .

2

3 Grover’s Algorithm

Grover’s algorithm finds the unique marked element z* such that f(z*) = 1 using repeated applications of
two reflections:

1. A reflection about the hyperplane defined by the oracle Uy, which flips the phase of |z*).
2. A reflection about the uniform superposition state, implemented by the diffusion operator D.

Each iteration amplifies the amplitude of |2*) while reducing that of all other basis states.

Grover’s Algorithm

1. Initialization: Prepare the n-qubit uniform superposition

1
=+ =—=> lz).
2. Oracle Reflection: Apply the phase oracle Uy:

U,) —|z), ifz=ax*,
€Tr) =
! |z), otherwise.

This inverts the sign of the amplitude corresponding to the marked item.

3. Diffusion Reflection: Apply the so-called diffusion operator D with
D = 2|+7}4"| ~ I
which reflects all amplitudes about their mean, thereby increasing the marked state’s amplitude
and slightly decreasing all others. It performs the ampltidude transformation

1 Nl
Qg — 20— ay, where a:N Zax.
z=0

4. Iteration: Repeat steps 2 and 3 approximately

times. After these iterations, measuring the state yields =* with high probability.

Let us now take a closer look at the Grover iteration works.

3.1 Visual illustration of a single Grover iteration

To visualize Grover’s iteration, consider the following progression of amplitudes:

IMlustration of the Grover Iteration

1
1. Start with uniform superposition: |[+") = — |x) .
v
p B |
=]
% . z* (marked)
EVNIE TR STTTRTTTTTTTTTTTTRNSCTTT T TTTTTTNITTTTTWT T 7
<010 [I T 0
Q‘ \\ f],‘ /fb‘ /q)\ /x\
< 3 3

Basis states

2. Apply the phase oracle Uy: The marked amplitude flips sign.

Amplitude
-
T
(—
-
=
—
=
—
| |

Basis states

3. Apply the diffusion operator D: Reflection about the mean increases the marked amplitude.

x* (marked)

Amplitude
2
—
|
|
|
|
|
|
|

Basis states

4. Repeat: Each iteration of (Uy, D) further increases the amplitude of [x*). After ¢ iterations:

(2t + 1)2

QxR ——— Pr[measure z*] ~ =

Choosing t = O(\/N) yields a measurement success probability close to 1.

3.2 The Diffusion Operator

The diffusion operator acts as a reflection about the uniform superposition:
D=2+ +"| — I.
In the computational basis {|0),...,|N — 1)}, we can express it as

1

| 2

2
~ 1

-z
- 2z

=S
2‘[\') -
=S

—_

It performs the transformation

2=

N-1
Qg — 20— oy, where o = Z Oy
=0
Thus, D flips every amplitude about their average value, amplifying those below the mean (including the

marked one after phase inversion). The diffusion operator D can be implemented using the simple unitary
operator A = 2 |0)(0| — I (which is later interleaved with Hadamards), as shown below.

D T AT

Figure 3: Implementation of the diffusion operator D.

3.3 Quantum Circuit for Grover’s Algorithm

The full quantum circuit for Grover’s algorithm is a direct translation of the iterative procedure we have
already described conceptually. We begin with n qubits initialized to \O>®n and apply Hadamard gates to
create the uniform superposition |+™). Then, each Grover iteration consists of two main components:

* The phase oracle Uy, which flips the sign of the amplitude corresponding to the marked state z*.

* The diffusion operator D, which reflects all amplitudes about their average, thereby amplifying the
marked state’s amplitude.

After roughly O(\/N) repetitions of this sequence, the probability of measuring the marked state ap-
proaches 1. The following circuit illustrates this process:
The repeated (Uy, D) pairs form the Grover iteration block. The number of iterations required depends on
the size of the search space /N and the number of marked elements. For a single marked item, approximately
L%\/N | iterations maximize the probability of measuring the correct result. Finally, a measurement in the

computational basis yields the marked element z* with high probability.

o4 HH H+—— HH=

o~ H - H =

Figure 4: Quantum circuit for Grover’s algorithm. Each iteration applies the oracle Uy followed by the
diffusion operator D.

3.4 Geometric Interpretation

Grover’s algorithm can be elegantly understood as a sequence of geometric rotations in a two-dimensional
subspace. Although the search space consists of N = 2" computational basis states, all the action of the
algorithm takes place within the plane spanned by the two orthogonal vectors:

. 1
|x™) | |unmarked) = TN Z |x) .

TH#T*

By construction, (z*|unmarked) = 0. The initial uniform superposition can therefore be expressed as

1
|+") = |z*) +4/1 — N lunmarked) .

|unmarked)

Figure 5: Geometric view of Grover’s iteration as successive reflections about |[+") and |z*).
Each Grover iteration performs two reflections:
1. Uy reflects the current state about the [unmarked) axis (by flipping the phase of |z*)),
2. D reflects the result about the initial state |+").
The composition of two reflections yields a rotation by an angle 26 within the plane span{|z*) , lunmarked) },
where)

sinf = ——

Mok

After ¢ iterations, the state vector has rotated by an angle (2t + 1) toward |z*), and thus the probability of
measuring the marked state is

Pr[measure z*] = | (z*|(DU;)"|+") ‘2 =sin®((2t + 1)0).
To maximize this probability, we choose

t%%\/ﬁ,

which brings the state vector very close to |z*), ensuring that measurement yields the correct solution with
high probability.

3.5 Multiple marked elements

Grover’s algorithm also extends naturally to the case where there are K marked items:
{ze€{0,1,....N—1}: f(z) =1} = K.

Let | M) denote the uniform superposition over the marked states, and |U) denote that over the unmarked

states. The state of the algorithm again evolves entirely within the two-dimensional subspace span{|M) , |U)}.
In this case, the angle of rotation per iteration satisfies

) K
sinf = N

and after ¢ iterations, the success probability is

K
Pr[measured item is marked] = sin? ((2t + 1)0) = sin2<(2t + 1)\/;) .

A7)

oracle calls to find a marked element with high probability.

Thus, we require only

	Problem Definition
	Phase Oracle
	Grover’s Algorithm
	Visual illustration of a single Grover iteration
	The Diffusion Operator
	Quantum Circuit for Grover's Algorithm
	Geometric Interpretation
	Multiple marked elements

