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LECTURE # 14: QUANTUM COMPLEXITY THEORY

Before we dive into quantum complexity theory, we will begin with a brief introduction to classical
computational complexity theory—a framework for reasoning about computational problems. The goal of
complexity theory is to classify problems according to the amount of computational resources required to
solve them; for example, time, space, randomness, or interaction.

In this lecture, we focus on time as the primary resource and briefly touch on randomness. We introduce
several foundational complexity classes and illustrate them through canonical examples.

1 Introduction to Computational Complexity

1.1 Computational Resources and Problem Types

A computational resource quantifies the cost of executing an algorithm. The most common examples are:
* Time: the number of computation steps required as a function of input size.
* Space: the amount of memory used during computation.
* Randomness: the number of random bits an algorithm consumes.

* Interaction: the number of rounds or messages exchanged in a protocol between a (possibly efficient)
verifier and one or more provers.

Other important but more specialized resources include the number of queries made to an oracle (query
complexity) and the amount of communication between parties (communication complexity). In this lecture,
we focus on time and randomness, the two primary measures relevant to the study of both classical and
quantum algorithms.

1.2 Decision Problems

In computational complexity, it is convenient to restrict attention to decision problems, which are problems
with simple YES or NO answers.

Definition 1.1 (Decision problem). A decision problem is a function
f:4{0,1}* = {0,1},

where each input instance © € {0, 1}* encodes a mathematical object (e.g., a number, a graph, or a Boolean
formula). The output f(x) = 1 corresponds to the answer “YES” and f(x) = 0 to “NO.”



Remark 1 (Search problems and decision-to-search). Many computational tasks are naturally search prob-
lems, where the goal is to produce a witness/solution (e.g., a satisfying assignment, a factor of an integer).
For a wide range of problems, it is convenient to study their decision versions, because decision formulations
fit cleanly into complexity classes and allow uniform comparisons.

Formally, a search problem can be specified by a polynomially decidable relation R(x,w) with polyno-
mially bounded witnesses |w| < poly(|z|). The associated decision language is

Lr = {z : 3w with R(x,w) = 1}.
In many canonical cases, access to a decision oracle for Ly suffices to recover a witness with only polyno-
mial overhead. We will see two generic ways to achieve this later.
1.3 Examples of Decision Problems

We now examine three canonical decision problems that will serve as running examples. In the latter two, we
also record a simple decision-to-search reduction, instantiating the two generic patterns mentioned above.

Problem 1: PRIMES

Given an integer N (represented in binary), output YES if [V is prime and NO otherwise.

This problem was long believed to require randomization to solve efficiently, until the discovery of the
deterministic AKS primality test [AKS04], which showed that PRIMES lies in class P.

Problem 2: SAT

Given a Boolean formula ¢ over variables z1, . . ., x,,, output YES if there exists a satisfying assignment
(1,...,2,) € {0,1}" such that p(x1,...,x,) = 1, and NO otherwise.

The satisfiability problem (SAT) is the first known NP-complete problem and plays a central role in
complexity theory.

Claim 1.2 (Decision-to-search for SAT via self-reduction). Given oracle access to the decision problem
Osat(+), there is a polynomial-time procedure that, on input p, either returns a satisfying assignment for
@ or correctly concludes that  is unsatisfiable. The procedure makes at most n + 1 oracle queries for

n = #vars(p).

Proof. Query Osat(y). If NO, output “unsat.” Otherwise, for i = 1,...,n do: fix z; < 0 obtaining ¢; o;
if OsaT(i0) = YES, keep z; = 0 and set ¢ < ¢;o; else set ; = 1 and update ¢ accordingly. Each
step preserves satisfiability, so after n steps we obtain a full satisfying assignment. The time overhead is
polynomial and the number of oracle calls is O(n). O

Problem 3: FACTORING

Given two integers [V and K, output YES if N has a nontrivial factor less than K, and NO otherwise.

Although FACTORING is often stated as a search task (“find a nontrivial factor of N”), the following
shows that the decision form above suffices to recover a factor efficiently.



Claim 1.3 (Decision-to-search for FACTORING via threshold queries). Let Opac(N, K) be the decision
oracle that answers whether N has a nontrivial factor < K. There is a polynomial-time procedure that,
on input N, finds a nontrivial factor of N (or correctly concludes that N is prime) using O(log N) oracle
queries.

Proof. If desired, first run a deterministic primality test to handle prime N outright; alternatively, note
that if no factor < |/ N| exists then N is prime. To find a factor when one exists, binary search over
K € [2, |V N|] using the monotone predicate

P(K) := [N has a nontrivial factor < K.

Set L <~ 2, R + |V/N|. While L < R,let M = |(L + R)/2]; if Opac(N, M) = YES set R <— M, else
set L < M+1. At termination, L is the smallest nontrivial factor; verify L | N and return L (optionally
also N/L). The search uses O(log N) queries and polynomial-time arithmetic. O

Claims 1.2 and 1.3 instantiate the two generic patterns from the remark above: self-reduction for SAT and
threshold (monotone) queries for FACTORING.

2 Important Complexity Classes

Before turning to quantum models, we briefly organize the classical landscape. A complexity class is speci-
fied by four ingredients: (i) a uniform algorithmic model (e.g., deterministic/probabilistic Turing machines),
(ii) a resource budget as a function of input length (e.g., time, space), (iii) an acceptance criterion (deter-
ministic acceptance, nondeterministic witnessing, bounded error, etc.), and (iv) a fixed encoding convention
for inputs. Throughout, we treat polynomial time as the threshold for “efficient,” and we work with decision
problems unless otherwise stated.

2.1 The Class P

The first major complexity class is the class of problems solvable in deterministic polynomial time.

Definition 2.1 (Class P). A decision problem f belongs to P if there exists a deterministic algorithm that
computes f(x) in time at most O(|x|¢) for some constant ¢ > 0, where |x| denotes the length of the input.

Intuitively, P contains all problems that can be solved efficiently by a classical deterministic computer.
Examples include PRIMES, graph connectivity, and sorting.

2.2 The Class NP

Next, we consider problems whose solutions may be hard to find but easy to verify.

Definition 2.2 (Class NP). A decision problem f belongs to NP if, whenever f(x) = 1, there exists a
polynomial-length witness w that can be verified in polynomial time by a deterministic algorithm.

Equivalently, NP is the class of problems for which YES instances admit efficiently verifiable certifi-
cates. The FACTORING problem lies in NP: if N has a nontrivial factor d < K, the witness w = d
can be verified in polynomial time by checking that d | N and 1 < d < K. Similarly, SAT is in NP: a
satisfying assignment serves as a witness that can be checked in time polynomial in the size of the formula.



2.3 NP-Completeness
Within NP, some problems are particularly important because they capture the full difficulty of the class.
Definition 2.3 (NP-completeness). A decision problem A is NP-complete if:

1. A€ NP, and

2. every problem B € NP can be reduced to A by a polynomial-time reduction.

NP-complete problems are the hardest problems in NP. If any NP-complete problem were shown to be
solvable in polynomial time, then P = NP would follow. The canonical NP-complete problem is SAT, as
established by Cook’s theorem.

2.4 The Class BPP

Finally, we introduce a complexity class that captures efficient computation using randomness.

Definition 2.4 (Class BPP). A decision problem f belongs to BPP (Bounded-Error Probabilistic Polyno-
mial Time) if there exists a probabilistic polynomial-time algorithm A such that for every input x:

PrlA(z) = f(x)] =

wiN

The constant 2/3 is arbitrary; by repeating the algorithm and taking a majority vote, the success proba-
bility can be amplified exponentially close to 1.

Polynomial Identity Testing

The Polynomial Identity Testing (PIT) problem is a canonical example in BPP. Given two multivariate
polynomials p(z1,...,zy,) and g(x1,...,x,) presented as arithmetic circuits, the task is to decide
whether p = ¢. A simple randomized algorithm evaluates both polynomials on random inputs and
declares equality if all evaluations match, achieving bounded error by the Schwartz—Zippel lemma.

2.5 Summary

A quick word on MA. MA (Merlin—Arthur) is a one-round proof/verification model: a prover (Merlin)
sends a polynomial-length string (witness) w; then a polynomial-time randomized verifier (Arthur) checks
it with bounded error (say completeness > 2/3, soundness < 1/3). In particular,

P CBPP C MA and P C NP.

Where is BPP relative to NP? We do not currently know whether BPP C NP or NP C BPP.
Sufficiently strong pseudorandom generators [NW94, IWO1] imply

P = BPP.

Importantly, any unconditional proof that resolves P vs. BPP cannot be relativizing: in the relativized
world both behaviors occur — there exist oracles A with P4 = BPPA and oracles B with PP 4 BPPB
[BF99].



3  Quantum Complexity: The Class BQP

We now introduce the first quantum complexity class. Informally, BQP is the quantum analogue of BPP,
obtained by replacing probabilistic polynomial-time algorithms by polynomial-size quantum circuits with
bounded two-sided error.

Definition 3.1 (Class BQP). A decision problem f : {0,1}* — {0,1} is in BQP if there exists a family

of polynomial-size, uniformly generated quantum circuits {Qy, }n>1 such that for every input x € {0,1}",

Pr[Qn(z)outputs f(zx)] > %

Here the probability is over the outcome of measuring a designated output qubit at the end of the compu-
tation. As usual, the constant % can be amplified to 1 — 2-8(n) by independent repetition and majority
vote.

FACTORING € BQP

By Shor’s algorithm, integer factorization (and, in particular, the decision version described earlier)
admits a polynomial-time quantum algorithm. Consequently, FACTORING lies in BQP. This pro-
vides a concrete example of a natural number-theoretic problem believed to be outside P but efficiently
solvable on a quantum computer.

3.1 Relationships

Quantum computation subsumes classical deterministic and randomized computation:
P C BPP C BQP.

The first inclusion is immediate; the second follows because a quantum circuit can sample classical random
bits and simulate a probabilistic Turing machine with only polynomial overhead.

Surprisingly, BQP is known to be simulable in polynomial space (though it is not believed to be simu-
lable in polynomial time):

Theorem 3.2 (Theorem 8.4 of [BV97]). BQP C PSPACE.

At a high level, the proof evaluates acceptance probabilities of polynomial-size quantum circuits to
sufficient precision via a dynamic-programming traversal of the computation, storing only polynomially
many amplitudes at a time.

While unconditional separations between major classes remain elusive, there is compelling relativized
evidence about BQP:

Theorem 3.3 (Oracle separations; folklore after [BV97]; [BBBV97]). There exist oracles A, B such that
BQP4 ¢ NP4 and NP? ¢ BQP?Z.

Interpretation and limits. The first oracle exhibits a relativized world where quantum computation solves
problems beyond any nondeterministic polynomial-time verifier; the second shows that, with another oracle,
quantum speedups still fail to capture all of NP. Taken together, these point to the prevailing view that
BQP and NP are incomparable in general.



A complementary line of evidence comes from black-box lower bounds for search. Grover’s algorithm
provides a quadratic improvement for unstructured search — reducing 2" brute-force queries to 0(2”/ 2)
quantum queries — and the Bennett-Bernstein-Brassard-Vazirani bound shows this is optimal in the oracle
(query) model [BBBV97]. Thus, absent exploitable structure, quantum speedups alone are insufficient to
place NP-complete problems (e.g., SAT) in BQP. By contrast, structured number-theoretic problems such
as FACTORING are in BQP due to the algebraic structure leveraged by Shor’s algorithm.

3.2 Where We Stand

Collecting the above,

P C BPP C BQP C PSPACE,

and relativized worlds indicate that BQP and NP neither contain one another.
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