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The goal of this lecture is to explore the different ways qubits can be measured, and how measurement
on multiple systems differs from that on a single system. We begin by reviewing the standard procedure
for measuring a single qubit, then introduce a new perspective by describing measurement in terms of
linear operators. Next, we examine measurements in different bases, showing how each basis defines a
distinct set of states into which the qubit may collapse, leading to different possible outcomes. We then
formally define quantum measurement using the fourth axiom of quantum mechanics, which states that
measurements are represented by a collection of measurement operators acting on the state of a system.
The lecture also addresses the fundamental limitations of measurement, as illustrated by the Heisenberg
uncertainty principle, which highlights the impossibility of carrying out certain quantum measurements at
the same time. Finally, we extend the discussion from single systems to composite systems, demonstrating
how measurement operators can be applied across multiple qubits.

1 Review: Quantum measurement

Previously, we learned that a measurement of a qubit is destructive and occurs in a probabilistic manner
according to Born’s rule. Suppose the state of our system is given by

) = al0)+ 1),

where || + |32 = 1. Then, our measurement reveals an outcome |0) or |1) such that:
|0) with probability |c|?
Al =
) {|1> with probability |3|2.
2 Measurement operators

Let us now consider an alternative perspective on the Born rule from above; specifically, using the language
of measurement operators. Suppose that we have a single-qubit system which lives in a 2-dimensional
complex vector space C2 and which comes with an orthonormal basis {|0) , |1)}.

Previously, we encountered the so-called identity operation; this is the quantum gate of the form
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As you will show in Homework #1, Problem 4, we can conveniently characterizes the identity operation via
its action on the computational basis {|0) ,|1) } and write

I =10)(0] + |1)(1] (resolution of the identity)

So what exactly are the operators |0)(0| and |1)(1|? First note that they are linear operators; in particular,
they map vectors to vectors. In matrix form, these are given by the matrices

o= (g o) e mai=(g 7).

You should convince yourself that they sum to I, and that they act as desired on the basis {|0),|1)}. Do
|0)(0] and |1)(1| represent quantum gates? Not exactly: despite the fact that they represent linear operators,
they are not in fact unitary matrices and thus do not comprise valid quantum gates. Instead, these matrices
form so-called orthogonal projectors, which are convenient mathematical tools. Letting

o :=0)(0] and IIj := [1)(1

we find that Hg = Il and II? = II;; meaning, if we apply these operators twice, it’s as if we had applied
them once: they project down to the subspaces span{|0)} and span{|1)} such that

e Il projects onto the 1-dimensional subspace span{|0)} = span {)\ : (é) A€ C}
e II; projects onto the 1-dimensional subspace span{|1)} = span {)\ : <§)> DN (C}

Moreover, because {|0) , |1)} is an orthonormal basis, they are also orthogonal in the sense that

0 0

Mot = (0 0

> = II;1 1.

More generally, we define orthogonal projectors as follows.

Definition: Orthogonal projectors

An ensemble of linear operators {I1; };c[,,,) With [m] = {1,...,m} consists of orthogonal projectors, if

° HZH] = 52']' -1, Vi, 5 € [m]

where d;; is the Kronecker delta which is equal to 1, if ¢ = j, and equal to 0, whenever i # j.

We will now see why the set {IIy, IT; } from before can be thought of as measurement operators.

Revisiting the Born rule. 'We will now use the machinery of orthogonal projectors to describe the notion
of a quantum measurement. The high level idea is that the projectors {II, II; } have the ability to break any
quantum state down into 1-dimensional subspaces which each carry an amplitude. The question of “what



is the amplitude corresponding to the outcome |0) or |1)?” then translates into “what is the amplitude on a
given subspace?” Generally speaking, for any qubit |¢)) = «|0) + 1) with o, 5 € C, we can write

) = 1)
= (Ilp +1IIy) - [¢) (resolution of the identity)
= o [¢) + 11 [¢) (by linearity)
= (10)(O) - [¢) + (D)) - [¢)
— —

how much of |0) is contained in [¢)  how much of |1) is contained in |4)
= (0y) - 10) + (1) - [1)
= (0] (a[0) + 1)) - [0) + (1] (a|0) + B 1)) - 1)
= al0) + /1)
where (0[1)) = « and (1]¢)) = S are the inner products between |¢)) and the basis vectors {|0) ,|1)}, and

where we used the orthonormality condition of the basis; meaning (i|j) = ¢; ; for 4,5 € {0, 1}.
What does the above measurement correspond to physically?

Example: Spin-alignment on the z-axis.

Suppose that the quantum state of our qubit [¢)) = «|0) + S|1) describes the spin of an electron;
meaning, it is in a superposition of two states given by spin-up and spin-down.

! |
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Measuring in the {|0) , |1) } basis tells us how the spin is aligned with respect to the z-axis of the Bloch
sphere: if the outcome is |0), the spin points up, whereas if the outcome is |1), the spin points down.*

“Image credit: https://blog.ifs.com/a-quantum-leap—-in-computing-power/

3 Measurement in a different basis

It turns out that, in quantum mechanics, there is actually nothing special about the computational basis
{|0),|1) }—in fact, we can just as well measure in any other basis of C2. We will see that measurement in
one basis basis can provide us with completely different information relative to another basis.

Suppose {|bo), |b1)} is another orthonormal basis of C2. Once again, we can ask:

[¢) = is [¢) either |bg) orisit |b)?

Not surprisingly, we can once again use the resolution of the identity, and write

I = |bo)(bo| + [b1)(b1]-


https://blog.ifs.com/a-quantum-leap-in-computing-power/

As before, we can introduce the projectors
Ho = ’b0><b0| and H1 = |b1><bl‘

Because {|bo), |b1)} is also an orthonormal basis of C2, we find again that 13 = TIj and I1? = II;; meaning,
if we apply these operators twice, it’s as if we had applied them once: they project down to the subspaces
span{|bg) } and span{|b;)} such that

e IIp projects onto the 1-dimensional subspace span{|by)}

e II; projects onto the 1-dimensional subspace span{|b;)}
Moreover, because {|bo) , |b1)} is an orthonormal basis, I1y and II; are also orthogonal in the sense that

00

Tl = (0 0

> = II;1 1.

Now, suppose we have a qubit |¢)) = «|0) + 3 |1) with o, 5 € C which is described to us in the basis
{]0),|1)}. Because {|bg), |b1)} is also an orthonormal basis of C2, we can express the basis vectors |0) and
|1) each as a linear combination of the new basis vectors {|bg), |b1) }. Plugging this in, we can write

[v) = 71bo) + 4 |b1)

for some new coefficients v, § € C such that |y|? 4 |6|> = 1. Then, we can once again write

) =1-[¢)
= (T + IIy) - |2) (resolution of the identity)
= Il [¢) + Iy [¢)) (by linearity)
= (1bo) (bol) - |4) + (161) (b1]) - |[4)
—_—— —_———

how much of [bo) is contained in [)  how much of |by ) is contained in |4)
= (bo|¢) - [bo) + (b1]¥)) - |b1)
= (Dol (7 bo) + & [b1) ) - 1bo) + (ba| (v [bo) + B1b1) ) - [b1)
=v|bo) + I |b1) .

where we used the orthonormality condition of the basis; meaning (b;|b;) = J; ; for i, j € {0,1}.

An example of a measurement in a basis which is not in the computational basis is the so-called
Hadamard basis measurement (see Homework #, Problem 2.3). Here, the measurement basis is specified
by another orthonormal basis {|+) , | ) of C2, where

0) + 1)

\/§
0) 1)

V2

What does the above measurement correspond to physically?

) =

-) =



Example: Spin-alignment on the z-axis.

Suppose that the quantum state of our qubit [¢)) = «|0) + S|1) describes the spin of an electron;
meaning, it is in a superposition of two states given by spin-up and spin-down.

Measuring in the {|+) , |—)} basis tells us how the spin is aligned with respect to the xz-axis of the Bloch
sphere: if the outcome is |+), the spin is horizontally aligned with the “+” side of the x-axis, whereas
if the outcome is |—), the spin is horizontally aligned with the “—” side of the x-axis.”

“Image credit: https://blog.ifs.com/a-quantum-leap—-in-computing-power/

4 Measurement postulate of quantum mechanics

We will now formally state the so-called measurement postulate of quantum mechanics. We will use the Von
Neumann measurement, which is also called a projective measurement. This is the standard measurement
framework introduced by John von Neumann in the early formulation of quantum mechanics, and which
encompasses virtually all measurements you will ever encounter in practice.'

Axiom 4 (Measurement)

A measurement is a process in which information about a physical system is acquired by an observer.
In quantum mechanics, measurements are described by a collection of measurement operators {II;}
acting on the state of a system; these are orthogonal projectors such that ) . II; = I.

If the system is in the state |1/}, the probability that we observe the label 7 is given by

Pr = "outcome i" | = ||II; [)|?

= (Y| H;-[ I1; ) (since {II;} are orthogonal projectors)
= (Y| IL; |).

Moreover, the state after the measurement is another normalized state of the form

I1; |¢) .
V(W] IL; [4)

"Note that there are also more general notions of a measurement; however, without loss of generality, these can be described by
a projective measurement onto a larger system. This is known as Naimark’s dilation theorem.



https://blog.ifs.com/a-quantum-leap-in-computing-power/

S Heisenberg Uncertainty Principle

It turns out that quantum mechanics enforces certain fundamental limits on what an observer can infer about
the state of a system. The Heisenberg uncertainty principle states that certain pairs of observables cannot
be simultaneously measured with arbitrary precision. For qubits, this principle can be illustrated using two
complementary bases: the computational basis {|0) , |1) } and the Hadamard basis {|+) , |—)}.

Suppose that a qubit is prepared in the state |0). If we measure the qubit in the computational basis
{]0), |1)}, the outcome is certain in the sense that

Pr [ :”O"] =1 and Pr [ ="1"| =0.

However, if we measure the same state |0) in the Hadamard basis, the outcomes become completely random:

:"+"] =[(+H0)* =3  and Pr[ =" = (-l = 5.

This loosely illustrates the uncertainty principle: knowing the state exactly in one basis (say, the computa-
tional basis) implies complete uncertainty in the complementary basis (the Hadamard basis). In this case,
we say that the the two measurement bases are mutually incompatible.

Pr

6 Measurements on Multiple Systems

Finally, we describe how the same formalism of projective measurements also applies to multiple quantum
systems. Suppose now that we have two Hilbert spaces, say H 4 and H g, and we wish to describe quantum
measurements on the joint system given by {4 ® Hp.

Suppose H 4 has dimension d4 with orthonormal basis {|a;)}i=o,. 4,—1 and Hp has dimension dp
with orthonormal basis {|b;) }j—o....4;—1. Then the basis of the tensor product space 74 ® Hp is

{laya®1bj) g |i=0,....,da—1, j=0,....,dp—1}.
Suppose also that we have an arbitrary joint state |1)) , 5 € 74 ® Hp which can be written as
da—1dp—1

) ap = Z Z aij lag) 4 @ [bj) g -

i=0 j=0
To conduct a measurement on multiple systems, we only need to slightly extend the formalism from the
previous section. Concretely, measuring |¢) , 5 in the basis above yields

V) ap yields outcome label (4, j) with probability ||IL;; [1/) 4 BH2

—#-
where we introduce the orthogonal projector on system AB of the form
Ilij = |ai)(aila ® [b;){b;| 5.

For example, if 3 4 uses the canonical basis {|7) };—o, .. a,,—1 and H p uses the canonical basis {|j) }i=o,...dp—1
then the projector takes the simple form given by

IL; = [i){ila ® [7)(j] -

6



Measurements on a single system. To describe a measurement which ocurrs on only a single system, we
simply modify the previous multiple system measurement method as follows.
Suppose we only measure system A in the basis {|a;) }izo,,,,,d 1—1- Then,

V) 4B - yields outcome label 7 with probability ||(TT; ® I) |1) 45

where we introduce the orthogonal projector on system A of the form
HZ‘ = |CLZ'><CLZ‘|A.

Similarly, if we only measure system 5 in the orthonormal basis {|b;)} =0, 4,;—1. Then,

ields outcome label j with probability || (4 ® II; 2
V) A - y J p y[I( )1 agll

where we introduce the orthogonal projector on system B of the form

I = |b)(bj| -
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