CS 599 P1: Introduction to Quantum Computation Boston University, Fall 2025
Instructor: Alexander Poremba Scribe: Alivia Pavel

LECTURE #5: REVERSIBLE COMPUTING &
QUANTUM CIRCUIT MODEL

Date: 9/16/25

The goal of this lecture is to understand reversible computing and the quantum circuit model. We will
compare quantum circuits and gates to classical, digital circuits and gates. We will explore similarities and
differences between these two models of computation. In comparing the two, we will finally answer the
question "Can a quantum computer simulate a classical digital computer?"

1 Quantum information processing

Before we can understand the relationship between classical and quantum computation, let us briefly review
the basic ingredients behind quantum computations.
Quantum Bits or ""Qubits''. The fundamental unit of quantum information is the qubit:

* (1 qubit) A qubit is a complex linear combination of two logical states |0) and |1), i.e.,

) = a|0) + B[1) suchthat o, 8 € C and |a|? + |8)* = 1.
* (n qubits) An n-qubit state is a complex linear combination of 2" logical states, i.e.,

[v) = Z ag|z1,...,m,) suchthat o € C and Z a2 = 1.
e S0 ze{0,1}n

Quantum Gates. The states of a quantum computation evolve via a sequence of linear transformations;
these are typically referred to as quantum gates.

* Quantum gates are unitary operators that perform operations on qubits, and thus map qubits to qubits;
in general, they are complex-valued matrices U such that

|4) — U) suchthat UTU = I =UUT and (U)~ ! =UT.

The unitarity condition is important because it ensures that:

1. Quantum gates preserve the probabilistic nature of qubits: the total probability sums to 1.

2. Quantum gates are inherently reversible: every quantum gate has an inverse, which is consistent
with the postulate that closed quantum systems evolve in a reversible manner.

Let us now consider a simple example of a single-qubit quantum gate.

Example: The Pauli-X gate or the "Bit Flip Gate"

The X -gate is a linear transformation that acts on a single qubit, and can be represented as

X = ((1) é) and (X)' = X.

Its action on the computational basis is as follows:

X10) = 1)
X 1) =10)
X|by=b®l), forbe{0,1}

) = a0) + 8[1) — X | B810) + 1)

We also countered the notion of a two-qubit gate; these types of gates act on a tensor product of basis
states. Recall that a two-qubit state lives in a tensor product space C> @ C2. Letting A denote the
system of the first qubit, and letting B denote the system of the second qubit, we can represent the
computational basis of the two-qubit system by the four basis states

{104 ®10) 5,004 ® 1) 5,[1) 4 ®[0)5,[1) 4 @ 1) 5}

Let us now consider the following example of a two-qubit gate.

Example: Two-Qubit Gates

Consider the product gate consisting of an X gate on the A system and a Z gate on the B system, where

= ((1) _01> and (2)' = Z.

Letting |¢)) , 5 be the quantum sate of the form

) a5 = % 0, ® [0) 5 + % 0} ® [1) 5

we find that the output of (X4 ® Zg) |¢) 4 is of the form

Now that we have reviewed the essentials of quantum information processing, we will switch gears and
compare this to the concept of a classical digital computer.

) 4 = %|1>A®|O>B*%‘1>A®|1>B

2 Classical digital computation

Can a quantum computer simulate a classical digital computer? To properly answer this question, we first
need to be precise about what we mean by a “classical computer.”

What does a classical digital computer do? At the most fundamental level, classical computers are
function evaluation machines. They compute Boolean functions of the form

f:{0,1}" — {0,1}"™,

where f is a function that maps n input bits to m output bits. This might seem overly simplistic, but it’s
remarkably general: everything a classical computer does, from web browsing to video games, to scientific
simulations, and more, can ultimately be reduced to evaluating some Boolean function on binary inputs.

How does a classical digital computer work? The magic of classical computers lies in how they build
up from simple components to compute these complex functions. Classical computers compute Boolean
functions via a sequence of logic gates operating under many layers of abstraction:

applications
.| programing languages
software domain libraries A hioh level of
operating systems abstraction

program abstraction barrier
architecture

- . components

digital domain 1 . s
integrated circuits low level of
logic gates \ abstraction

digital abstraction barrier
analog domain { transistors

All software and functions of a classical computer can be reduced to a series of logic gates and bits.
This hierarchical structure means that to understand what quantum computers need to simulate, we must
understand these basic logic gates that form the foundation of all classical computation.

3 Classical Logic Gates

Now we’ll examine the basic building blocks that make classical computation possible. These gates perform
simple logical operations on one or two bits, but when combined, they can implement any computable
function. Understanding these gates is essential because we’ll later need to show how quantum computers
can implement each of these operations.

Let us now consider some of the most fundamental logical gates.

The NOT gate: The simplest gate is the NOT gate, which implements logical negation (flipping a bit):

e
a—a=adl1

The AND gate: The AND gate implements logical conjunction - it outputs 1 only when both inputs are 1:

T D
bj

(a,b) —aNnb=a-b

The OR gate: The OR gate implements logical disjunction - it outputs 1 when at least one input is 1:

a
b

(a,b) —aVb
The gate set consisting of the following three logical gates
{AND, OR, NOT}

is universal for classical computation; meaning it can represent any Boolean function as a logical circuit
consisting solely of the aforementioned gates. This universality property means that any computation a
classical computer can perform can be built from these three basic operations.

Another important gate is the NAND gate, which by itself is also universal for classical computation and
can be used to compute any Boolean function.

The NAND gate The NAND gate (“NOT AND”) produces a “0” output only when all inputs are true “1”*:

a

Logical Gate Truth Tables. To fully describe the input-output behavior of these logical gates, we state
the complete truth tables for NOT, AND, OR, and NAND below:

AND OR NAND
Input | Output Input | Output Input | Output
NOT
Inout | Outout al|blaAb a|lblavb al|b|laAb
T 000 000 001
0 I 01110 0111 011
110]0 1101 1101
111 1111 11110

Example: Logical Circuit with Three Inputs

Here is an example of a logical circuit constructed from the universal set of logic gates. The circuit
takes three binary inputs (a, b, ¢) and computes the function:

a

b f(a,b,c) = NAND(a,b) A€

This demonstrates how simple logic gates can be combined to implement more advanced functions.

With this foundation in classical computation established, we can now examine the fundamental chal-
lenge that arises when we try to connect classical and quantum computation: the problem of irreversibility.

4 The Physics of Information

Before we can understand why reversibility matters in computation, we need to explore the deep connection
between information processing and and the laws of physics. At this point, the reader might wonder:

« if digital computation requires us to erase information, say when resetting the value of a bit, and

« if the laws of physics require that all processes in nature must be inherently reversible (at least, in
principle), then

* how can such irreversible operations possibly be performed in a physical system, such as a computer?

In 1961, Rolf Landauer made an important observation about the thermodynamic relationship between
information and energy. This is now known as Landauer’s principle.

Landauer’s Principle

Any logically irreversible manipulation of information, such as the erasure of a logical bit, must be
accompanied by a corresponding change in entropy, and thus in the release of heat.

Concretely, erasing a single bit of information requires a minimum energy dissipation of k5T In(2),
where kp is Boltzmann’s constant and 7" is the temperature of the system.

This principle establishes a fundamental physical limit: irreversible computation necessarily dissipates
energy. Therefore, for any sufficiently long computation, this energy cost becomes a serious constraint.
To illustrate Landauer’s principle, consider the following physical instantiation of a logical bit.

Example: Molecule in a box

A single molecule is put in a box which is divided by a removable partition. Once we insert the partition
into the box, this simple physical system encodes a logical bit:

* The bit is “1” if the molecule is in the left half of the box (denoted by L); and

* The bit is “0” if the molecule is in the right half of the box (dentoed by R).

L R

v
@)

To erase this bit (i.e., to reset it to the standard state “0”), we remove the partition and push a piston from
the left to the right, thereby compressing the contents of the box. This ensures that the molecule is now
in the right-hand side of the box. According to Landauer’s principle, this compression step requires
work kpT In(2) and generates heat which is released into the environment. While this process is still
reversible in principle—at least globally, when also taking the environment into account—erasing even
a single bit of information nevertheless comes with a thermodynamic cost.

S Reversible Computing

In the 1970s, Charles Bennett made an important observation that greatly influenced the field of quantum
computation. Bennett observed that Landauer’s principle only applies to irreversible operations. If we
could make computation reversible, we could, in principle, compute without energy dissipation.

Bennett showed that any classical computation can be made reversible by

* keeping a complete history of the computation;
* using only reversible logic gates; and
* never erasing information.

This insight directly connects to quantum computation because quantum mechanics is fundamentally
reversible—all quantum operations are unitary and therefore invertible.

6 Reversible Computing and Classical Circuits

Now that we understand the physics behind information processing, we can examine how this applies to
computational systems and why reversibility becomes crucial when we transition to quantum computing.

Problems with irreversibility. Classical logic gates like AND and OR are irreversible, meaning we lose
information during computation. This creates both physical and computational problems:

 AND gate: If output is 0, we cannot actually determine if input was (0, 0), (0,1), or (1, 0).
* OR gate: If output is 1, we cannot determine if input was (0, 1), (1,0), or (1,1).

According to Landauer’s principle, this irreversibility leads to information loss and unavoidable energy
dissipation into the environment. Evolution in closed quantum systems, by contrast, is inherently reversible,
and thus all quantum operations must also be reversible. So if we want quantum computers to simulate
classical computers, we need to find a way to make classical computation reversible.

Following Bennett’s insight, the solution is to use reversible logic gates instead. These gates have special
properties that preserve information and avoid energy dissipation:

* the number of inputs bits equals the number of output bits;
* the mapping is bijective (one-to-one and onto); and
* we can always recover the input from the output.

Following Bennett’s insight, no information would be lost during such a computation. By solely using
reversible gates, we can nevertheless implement any classical computation while satisfying the reversibility
requirements of quantum mechanics.

A reversible NAND gate. Previously, we saw that a NAND gate is universal for classical computation: a
circuit comprised of NAND gates can compute any Boolean function f : {0,1}" — {0, 1}™.

To make the gate reversible, we can simply “carry the input bits around.” The reversible analog of a
NAND gate is called a Toffoli gate; it is described by the following circuit notation:

a a
b b
c e c® (anb)

In other words, a Tof foli gate computes the following:
(a,b,c) — (a, b, c® (a A\ D)).

By setting ¢ = 1, we recover precisely the NAND gate from before. Notice that the gate is reversible because
we still have the input bits; in particular, executing the gate twice in a row onto its output resets the input
back to its initial value. We will now see how to use the same principle of reversible computing to evaluate
an arbitrary Boolean function on a quantum computer.

7 Can Quantum Computers Simulate Classical Computers?

We’re now ready to answer our main question. Armed with our understanding of reversible computation
and quantum gates, we can provide a definitive answer with a clear explanation of why it works.

The Answer: Yes! Quantum computers can efficiently simulate classical computers. Suppose we wish
to compute an arbitrary Boolean function f : {0,1}" — {0,1}"™ which, in general, is not going to be
reversible. Following Bennett’s insights, we will simply compute f in a reversible manner, just like in the
Toffoli gate from before. Suppose we wish to compute f(z), for some input x € {0,1}".

First, we initialize n qubits and set them to the value € {0, 1}"; in other words, we have

|x1,x2,... ,wn> .
—

n many “input” qubits

Next, we append m additional qubits which we will use to store the output of the function, i.e.,

|z1, 22, ..., 2n) ® 10,0,...,0)
—_—— —_——
n many “input” qubits m many “output” qubits

resulting in a total of n 4 m qubits of memory. By carefully' replacing each logical gate (in the description
of the classical circuit which computes f) with its corresponding reversible variant, it is possible to perform
the following reversible evaluation U of the Boolean function f:

Us
|z1, 22, ..., xn) @ 10,0,...,0) = |zi,22,...,2,) @ |f(z1,22,...,2,)) .
—_— —_———
n many “input” qubits m many “output” qubits n many “input” qubits m many “output” qubits

Because we still have access to the input € {0,1}" of f, this is reversible even if f in itself is not
reversible! To illustrate why this is the case, let us fully describe what the the corresponding (n + m)-qubit
unitary operator Uy would look like. Recall that, to describe a linear operator, we need to fully specify how
it acts on all of the n + m many computational basis states.

Letx = (x1,%2,...,2n) andy = (y1, Y2, ..., Ym). Then, we let Uy be defined as follows:

Urloy@ly) = lz)@lyo f(z)).

Clearly, this is reversible: if we apply Uy twice in a row, this resets the input qubits back to their initial state.
Moreover, by setting y = (0,0, ...,0), we can compute f as before! Most importantly, however, Uy is also
unitary, and thus a perfectly valid reversible quantum operation.

To see how Uy acts on a general quantum input state on n + m qubits, we can consider an arbitrary
(n 4+ m)-qubit input state of the form

)= D auylr)®|y).

ze€{0,1}"
y€{0,1}™

'This may require additional “workspace qubits” which can hold intermediate output values; for simplicity, we ignore these
subtleties in this lecture.

Then, by linearity, we find that Uy acts as follows:

Ul = Y azyle)®@|ye f(x)).
ze{0,1}"™
yE{O,l}'”

Important Note: The Converse Question

A related, and perhaps even more interesting, question is:
"Can classical computers efficiently simulate quantum computers?"

This is believed to be false in general. While classical computers can simulate quantum computers (by
keeping track of all the complex amplitudes), this simulation generally requires exponential amounts
of resources as the number of qubits grows. Quantum computers appear to have computational advan-
tages for certain problems (like Shor’s algorithm for factoring), suggesting that quantum computation
is fundamentally more powerful than classical computation.

8 Quantum Circuit Model

A quantum circuit is a graphical representation of a quantum algorithm, where quantum information is
processed through a sequence of quantum gates. The model consists of the following components:

* Quantum Input States: Each wire in the circuit corresponds to a quantum bit (qubit), initialized in
a known state such as |0), |1), or a superposition state. The initial state of the system is typically
denoted as [1)ip).

* Wires: Horizontal lines represent the evolution of individual qubits over time. Each wire is labeled
with a qubit identifier (e.g., q1, g2, - . .), or the label of the system, say A or B.

* Single-Qubit Gates: These gates act on individual qubits and include operations such as the Hadamard
gate (H), Pauli gates (X, Y, Z), and rotation gates. They modify the state of a single qubit.

* Multi-Qubit Gates: These gates involve interactions between two or more qubits. Common exam-
ples include the controlled-NOT (CNOT) gate, controlled-phase gates, and general n-qubit unitary
operations such as U acting on multiple wires simultaneously.

* Time Evolution: The circuit is read from left to right, with each column representing a time step or
layer of operations. This direction indicates the progression of quantum computation. In particular,
the gates all the way on the left get applied first.

* Measurements: Measurement operations are typically represented by meter symbols and collapse
the quantum state of a qubit into a classical bit. Measured wires are followed by classical output lines.

* Output State: Qubits that are not measured remain in a quantum state and collectively define the
final output state |1)oy). This state may be used for further quantum processing or interpreted as the
result of the computation.

o [
@ —y|—
i —[x]
u —H}—&
.
de
Time ’
Figure 1: A quantum circuit which takes as input 6 qubits, denoted by q1, g2, . . . , g¢. Here, the unitary U is a

6-qubit quantum gate and the unitary V' is a 3-qubit quantum gate. The final output state of the computation
is a single unmeasured qubit in the last wire, denoted by |1)oy). The two-qubit gates are both CNOT gates.

9 Universal Quantum Gate Sets

Previously, we saw that the gate set { AND, OR, NOT} is universal for classical computation. Therefore, one
might wonder whether quantum computation also admits universal quantum gate sets; meaning, a set of
gates that can approximately implement any quantum circuit with arbitrary precision.

It turns out that, in the quantum case, the answer is also yes! For the remainder of this section, we will
take a closer look at some of these fundamental building blocks.

The CNOT gate. An important quantum gates is the controlled-NOT (CNOT); it is represented as

control —e—

target —P—

The CNOT gate flips the target qubit in the second register (represented by the second wire above) if and
only if the control qubit in the first register (represented by the first wire) is in the state |1).
In matrix form, it is occasionally represented as

1 000
0100
CNOT = 0 0 01
0 010

However, we can also represent it by specifying how it acts on a given set of basis vectors. In the case of the
product space C? ® C2, we have the canonical basis given by

{10) @10}, 10) @ [1), 1) @0, [1) @ [1)}

10

CNOT |0) ® |0) = |0) ® |0)
CNOT [0) ® [1) = |0) ® |1)
CNOT [1) ® |0) = 1) ® [1) .
CNOT [1)® 1) = |1) ®0) .

Therefore, we can represent the action of the CNOT via the following quantum circuit:

|a) —¢— la)

b)) —— la®b)

In other words, the CNOT performs the operations (a, b) — (a,a & b) where @ is XOR (or, binary addition
modulo 2). Notice that this is a unitary matrix (you can verify that CNOT' - CNOT = I), which means the
operation is reversible—we can always undo it by applying the same gate again.

The S gate. The S gate is a single-qubit gate that applies a phase of 7 to the |1) component of a qubit. It
is represented as

)

=)

This gate leaves the |0) state unchanged and multiplies the |1) state by the imaginary unit ¢. For example,

In matrix form, the S gate is given by

510y =10),
S|y =i|1).

The S gate is also known as the phase gate, and satisfies S2 = Z, where Z is the Pauli-Z gate. It is
unitary and reversible, with St = §—1.

The T gate. The T gate is another single-qubit phase gate, applying a smaller phase of 7 to the |1)
component. It is represented as

)

1 0
T = |:0 e’iﬂ'/4:| :

This gate leaves the |0) state unchanged and multiplies the |1) state by ¢'"/%. For example,

In matrix form, the T gate is given by

T 10) =10},
T 1) = ™4 1),

11

The T gate is sometimes called the 7/8 gate and satisfies T¢ = Z. It is a crucial component in uni-
versal quantum gate sets, especially in fault-tolerant quantum computing. Like the S gate, it is unitary and
reversible, with 7T = 71,

These aforementioned gates allow us to construct universal quantum get sets:

Universal quantum gates

The following sets of quantum gates are universal for quantum computation; in particular, they can
approximate an arbitrary quantum circuit to any desired accuracy:

« {CNOT, H, S, T} — This gate set is universal for quantum computation in the sense of ap-
proximating any unitary operation on qubits. The Hadamard (H) and phase gates (.S, T') generate
arbitrary single-qubit rotations, while the CNOT enables entanglement between qubits.

e {Toffoli, H}— This setis universal for quantum computation when combined with quantum
ancilla qubits. The Toffoli gate (also known as the controlled-controlled-NOT) is a reversible
classical gate that, when paired with the Hadamard gate, allows for the simulation of quantum
behavior. This gate set is particularly relevant in reversible computing and in contexts where
classical logic is embedded within quantum circuits.

12

	Quantum information processing
	Classical digital computation
	Classical Logic Gates
	The Physics of Information
	Reversible Computing
	Reversible Computing and Classical Circuits
	Can Quantum Computers Simulate Classical Computers?
	Quantum Circuit Model
	Universal Quantum Gate Sets

