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LECTURE #6: QUANTUM ENTANGEMENT &
QUANTUM TELEPORTATION

Date: 9/18/25

In this lecture, we will encounter some of the “spookier” aspects of quantum mechanics; namely, the
notion of quantum entanglement. We begin by examining maximally entangled states, or Bell states, and
what makes them unique. From there, we briefly touch on the famous Einstein—Podolsky—Rosen (EPR)
paradox, which challenged the completeness of quantum theory and introduced the idea of “spooky action
at a distance.” Finally, we apply these concepts to the remarkable protocol of quantum teleportation, where
entanglement, together with classical communication, allows the transfer of an unknown quantum state
across space without physically sending the particle itself.

1 The Bell state

Last time, we briefly encountered the following interesting looking two-qubit state, which is prepared by a
simple quantum circuit consisting of a Hadamard gate and a CNOT gate:
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Let us verify the output of the circuit by keeping track of how the state evolves in each step.

Step 1: Initializing the input in AB. We begin with two qubits, both initialized in the state
0)4@10)5-
Step 2: Applying the Hadamard to qubit A. Applying a Hadamard to qubit A creates a superposition:
(Ha © 15)(10)4 9 10)) = (510 + 1100)) @ [0)5-

Expanding, this in the canonical computational basis of C? ® C?, we get

= (1004©10)5 + 1), ©10)):



Step 3: Applying a CNOT with control A and target B. Next, a controlled-NOT gate flips qubit B
when qubit A is in state |1). Acting on the state above, we obtain

1
%(|O>A ®[0)5 + )4 @ [1)p).
Therefore, the resulting state results exactly in the famous Bell state:
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Why makes the Bell state special? The reason the Bell state |®7) , 5 is a special quantum state is because
it is an entangled state—it cannot be written as a tensor product of two "local" states.

Definition: Quantum entanglement

A two-qubit quantum state |¢)) € C? ® C? is called entangled, if it cannot be decomposed as a tensor
product of two single-qubit states such that

V) ap = [¥1) 4 ® [Y2) 5,

for any choice of states [11) 4 and [12) 5. Otherwise, it is called a product state or separable state.

To illustrate the notion of quantum entanglement, let’s look at examples of quantum states where such a
decomposition is in fact possible. Consider the two-qubit state

V) ap = 5(/00) — [01) + [01) — [11)).

This state is clearly not entangled because

) 4 = <|0>A\"/EH>A> 2 <‘O>B\;§’1>B> .

2  Why is Entanglement Spooky?

Quantum entanglement becomes particularly striking when we imagine that two parties, Alice and Bob,
generate an entangled pair of qubits and then go their separate ways and travel over large distances.

Alice Bell state ‘(I)+>AB Bob

For instance, suppose Alice takes her qubit A with her on a journey to the Moon, while Bob remains on
Earth with the other qubit B. Despite the enormous distance between them, the two qubits remain described
by a single joint quantum state |®T) , 5 = %(|00> + |11)). The question is:

What happens when Alice performs a measurement on her qubit? Will Bob’s qubit be affected
instantaneously, even across such vast separations?

To explore this, we consider two thought experiments which are characterized by different measurement
choices by Alice. As we will see, these reveal the “spooky’ nature of quantum correlations.



Experiment 1: Measurement in the Computational Basis. Suppose Alice measures her qubit in the
computational basis {|0) , |1) }. The probability of observing outcome ¢ € {0, 1} is given by

SI=RURT
and the corresponding post-measurement state is
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e Outcome “0”’: Alice obtains outcome 0 with probability
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and the post-measurement state is
0)4 ®10)
e Outcome “1”’:  Alice obtains outcome 1 with probability
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and the post-measurement state is
Ha® g

Therefore, once Alice measures her qubit A, she obtains a random bit; moreover, Bob’s qubit in B is
instantaneously determined to be of the exact same value, even if Bob is far away. How spooky is this?

At first glance, this phenomenon may not seem so mysterious. After all, one could imagine a purely
classical scenario: before Alice and Bob separate, a random bit is generated and written down on two
identical slips of paper. Alice receives one slip in an envelope, Bob the other. When Alice opens her
envelope and discovers the bit value, she immediately knows what Bob will find as well. In this sense, the
correlations observed in the computational basis could, in principle, be explained by pre-shared randomness
(i.e., a “local hidden variable) rather than anything uniquely quantum.

To see why entanglement is truly “spooky”, we now consider yet another experiment.

Experiment 2: Measurement in the Hadamard Basis. Now suppose Alice measures her qubit in the
Hadamard (or “plus-minus”) basis {|+) , |—)}, where

|+) = ) £ (1)

1
Vol

The probability of observing outcome j € {+, —} is given by
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and the corresponding post-measurement state is
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Before we calculate the measurement outcomes, we first represent system A of the Bell state using the
Hadamard basis, rather than the computational basis; this allows us to write

90— () 6y (a0 o, ).

Outcome |+): The probability that Alice obtains outcome |+) is
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Moreover, the corresponding post-measurement state is given by
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Outcome |—): The probability that Alice obtains outcome
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Moreover, the corresponding post-measurement state is given by

[=)a®|=)p-

Remarkably, Bob’s state is once again perfectly correlated with Alice’s, even though Alice chose a
different measurement basis. This is much “spookier”: somehow Bob’s qubit instantaneously “knows”
what Alice measured, even though they are spatially separated over a large distance.



EPR Paradox: Spooky Action at a Distance?

In their famous 1935 paper, Einstein, Podolsky, and Rosen argued that the phenomenon we observed
in the previous two thought experiments suggests that quantum mechanics might be incomplete. They
considered entanglement to be evidence of some underlying “hidden variables” that pre-determine out-
comes. Otherwise, how could Bob’s qubit “know” what Alice measured, seemingly instantaneously?
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Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

A. EmwstEIN, B, PopoLsky axp N. RoseN, Instifute for Advanced Study, Princelon, New Jersey
(Received March 25, 1935)

In a complete theory there is an element corresponding
to each element of reality. A sufficient condition for the
reality of a physical quantity is the possibility of predicting
it with certainty, without disturbing the system. In
quantum mechanics in the case of two physical quantities
described by non-commuting operators, the knowledge of
one precludes the knowledge of the other. Then either (1)
the description of reality given by the wave function in

1.

NY serious consideration of a physical

theory must take into account the dis-
tinction between the objective reality, which is
independent of any theory, and the physical
concepts with which the theory operates. These
concepts are intended to correspond with the
objective reality, and by means of these concepts
we picture this reality to ourselves.

In attempting to judge the success of a
physical theory, we may ask ourselves two ques-
tions: (1) “Is the theory correct?”” and (2) “Is
the description given by the theory complete ?”
It is only in the case in which positive answers
may be given to both of these questions, that the
concepts of the theory may be said to be satis-
factory. The correctness of the theory is judged
by the degree of agreement between the con-
clusions of the theory and human experience.
This experience, which alone enables us to make
inferences about reality, in physics takes the
form of experiment and measurement. [t is the
second question that we wish to consider here, as
applied to quantum mechanics.

quantum mechanics is not complete or (2) these two
guantities cannot have simultaneous reality. Consideration
of the problem of making predictions concerning a system
on the basis of measurements made on another system that
had previously interacted with it leads to the result that if
(1) is false then (2) is also false. One is thus led to conclude
that the description of reality as given by a wave function
is not complete.

Whatever the meaning assigned to the term
complele, the following requirement for a com-
plete theory seems to be a necessary one: every
element of the physical reality must have a counter-
part in the physical theory. We shall call this the
condition of completeness. The second question
is thus easily answered, as soon as we are able to
decide what are the elements of the physical
reality.

The elements of the physical reality cannot
be determined by @ priori philosophical con-
siderations, but must be found by an appeal to
results of experiments and measurements. A
comprehensive definition of reality is, however,
unnecessary for our purpose. We shall be satisfied

with the following eriterion, which we regard as

reasonable. If, witheut in any woy disturbing a
system, we can predict with certainty (i.e., with
probability equal o unily) the value of a physical
quantity, then there exists an element of physical
reality corresponding lo this physical quantity. It
seems to us that this criterion, while far from
exhausting all possible ways of recoghizing a
physical reality, at least provides us with one

What bothered Einstein is that Alice’s actions seem to instantaneously influence Bob’s outcomes across
arbitrary distances—essentially “faster than light”, seemingly violating the laws of special relativity.
This apparent tension between quantum mechanics and relativity is what Einstein famously called
“spooky action at a distance.” Later developments, such as Bell’s theorem and experimental violations
of Bell inequalities, showed that no local hidden variable theory can reproduce all of the predictions of
quantum mechanics. We will revisit the resolution of this paradox in the next lecture.

Today, quantum entanglement still remains one of the deepest and most fascinating features of quantum
theory. As we will see next, it can also serve as a powerful resource for quantum protocols.



3  Quantum Teleportation
Suppose that Alice possesses a single qubit in an arbitrary state (which may or may not be known to her)
[W)=al0)+5811),  aBeC, |of +|87 =1

Her goal is to transmit this state to Bob, who is very far away. It turns out that, if Alice and Bob already
share a Bell state of the form

Alice Bell state D7) , 5 Bob

then Alice can feleport the quantum information encoded in |¢/) directly into Bob’s system using only local
quantum operations and some classical communication.

To carry out the quantum teleportation protocol, Alice and Bob need to perform the following quantum
computation, where the first two wires represent Alice’s qubits, and the third wire represents Bob’s qubit:
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Step 1: The joint initial state. The total system consists of Alice’s input qubit |¢)) together with the
shared Bell state:

) ® |2F) = (|0) + B]1)) @ 5(/00) + [11)).

Expanding, we obtain
%(a 000) + v [011) + 3|100) + B[111)).

Step 2: Alice applies the CNOT gate. After the CNOT is applied, the joint state becomes

\2(@ 1000) + o [011) + 5 [110) + B[101)).

Step 3: Alice applies a Hadamard on the first qubit. To see what happens, we do this term-by-term:
For the a-terms:
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For the S-terms:
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Since the state entering Step 3 carried an overall factor 1/4/2 from Step 1, and each expansion by H
introduces another factor 1/+/2, the total overall prefactor is 1/2. Collecting all terms yields

%(a 1000) + a [100) + @ [011) + & [111) + B]010) — B[110) + 3 |001) — 3 \101)).

Step 4: Measurement of Alice’s qubits. Alice measures her two qubits in the computational basis, be-
ginning with the first qubit with outcome b € {0, 1} and the second qubit with outcome a € {0, 1}, thus
(b,a) € {0,1} x {0,1}.

Depending on the outcome, Bob’s qubit collapses into one of four possible states, as shown below:

Alice’s outcome | Bob’s qubit | Relation to |¢))
(0,0) al0) + B 1) |¥)
(1,0) all) +310) X [)
(0,1) a0) —B1) Z )
(1,1) all) —310) XZ )

In other words, if Alice’s measurement outcome is (b, a), then Bob’s qubit in system B is of the form
X2

where X¢ = X,ifa =1, and X = [, if a = 0; similarly, Zb=Z iftb=1,and Z° =I,ifb = 0.
However, at this point of the protocol, Bob still cannot read this qubit without knowing what Alice

measured—it is scrambled. Thus the qubit remains “encrypted” until Alice classically communicates her

measurement results to Bob, who can then undo the transformations and recover the original qubit.

Step 5: Classical communication and recovery. Alice communicates the two classical bits (b, a) to Bob.
With this information, Bob applies the correction Z?X® to his qubit in system B, thereby recovering the
original state [¢). Importantly, Bob cannot reconstruct the state before Alice communicates her outcomes,
and Alice’s measurement irreversibly destroys her copy once and for all.

In conclusion, quantum teleportation achieves the remarkable transfer of an unknown quantum state us-
ing only entanglement and classical communication. Importantly, Alice’s is not able to transfer information
faster than light: without the use of classical communication (which is clearly susceptible to such a cosmic
speed limit), Bob has no chance at properly recovering her state.



Experimental realizations of quantum teleportation

Quantum teleportation was originally proposed as a theoretical protocol in 1993, but it has since
been realized in a wide range of experimental platforms, including photons, trapped ions, and super-
conducting qubits. In photonic systems, teleportation experiments have even been carried out over
long distances through optical fibers and free space, demonstrating its potential for future quantum
communication networks. These milestones build directly on the pioneering experimental verification
of quantum entanglement, a line of work recognized by the 2022 Nobel Prize in Physics awarded to
Alain Aspect, John Clauser, and Anton Zeilinger. Zeilinger, in particular, and his collaborators were
among the first to demonstrate quantum teleportation of photonic states.

Zeilinger

“for experiments with entangled photons,
establishing the violation of Bell inequalities
and pioneering quantum information science”
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