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In this lecture, we will encounter some of the “spookier” aspects of quantum mechanics; namely, the
notion of quantum entanglement. We begin by examining maximally entangled states, or Bell states, and
what makes them unique. From there, we briefly touch on the famous Einstein–Podolsky–Rosen (EPR)
paradox, which challenged the completeness of quantum theory and introduced the idea of “spooky action
at a distance.” Finally, we apply these concepts to the remarkable protocol of quantum teleportation, where
entanglement, together with classical communication, allows the transfer of an unknown quantum state
across space without physically sending the particle itself.

1 The Bell state

Last time, we briefly encountered the following interesting looking two-qubit state, which is prepared by a
simple quantum circuit consisting of a Hadamard gate and a CNOT gate:

|0⟩A

|0⟩B

H

1 2 3 }
|Φ+⟩AB = 1√

2
(|0⟩A ⊗ |0⟩B + |1⟩A ⊗ |1⟩B)

Let us verify the output of the circuit by keeping track of how the state evolves in each step.

Step 1: Initializing the input in AB. We begin with two qubits, both initialized in the state

|0⟩A ⊗ |0⟩B .

Step 2: Applying the Hadamard to qubit A. Applying a Hadamard to qubit A creates a superposition:

(HA ⊗ IB)
(
|0⟩A ⊗ |0⟩B

)
=

(
1√
2
(|0⟩A + |1⟩A)

)
⊗ |0⟩B .

Expanding, this in the canonical computational basis of C2 ⊗ C2, we get

1√
2

(
|0⟩A ⊗ |0⟩B + |1⟩A ⊗ |0⟩B

)
.
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Step 3: Applying a CNOT with control A and target B. Next, a controlled-NOT gate flips qubit B
when qubit A is in state |1⟩. Acting on the state above, we obtain

1√
2

(
|0⟩A ⊗ |0⟩B + |1⟩A ⊗ |1⟩B

)
.

Therefore, the resulting state results exactly in the famous Bell state:

|Φ+⟩AB =
1√
2
(|0⟩A ⊗ |0⟩B + |1⟩A ⊗ |1⟩B).

Why makes the Bell state special? The reason the Bell state |Φ+⟩AB is a special quantum state is because
it is an entangled state—it cannot be written as a tensor product of two "local" states.

Definition: Quantum entanglement

A two-qubit quantum state |ψ⟩ ∈ C2 ⊗ C2 is called entangled, if it cannot be decomposed as a tensor
product of two single-qubit states such that

|ψ⟩AB = |ψ1⟩A ⊗ |ψ2⟩B ,

for any choice of states |ψ1⟩A and |ψ2⟩B . Otherwise, it is called a product state or separable state.

To illustrate the notion of quantum entanglement, let’s look at examples of quantum states where such a
decomposition is in fact possible. Consider the two-qubit state

|ψ⟩AB = 1
2

(
|00⟩ − |01⟩+ |01⟩ − |11⟩

)
.

This state is clearly not entangled because

|ψ⟩AB =

(
|0⟩A + |1⟩A√

2

)
⊗
(
|0⟩B − |1⟩B√

2

)
.

2 Why is Entanglement Spooky?

Quantum entanglement becomes particularly striking when we imagine that two parties, Alice and Bob,
generate an entangled pair of qubits and then go their separate ways and travel over large distances.

A

Alice

B

BobBell state |Φ+⟩AB

For instance, suppose Alice takes her qubit A with her on a journey to the Moon, while Bob remains on
Earth with the other qubit B. Despite the enormous distance between them, the two qubits remain described
by a single joint quantum state |Φ+⟩AB = 1√

2
(|00⟩+ |11⟩). The question is:

What happens when Alice performs a measurement on her qubit? Will Bob’s qubit be affected
instantaneously, even across such vast separations?

To explore this, we consider two thought experiments which are characterized by different measurement
choices by Alice. As we will see, these reveal the “spooky” nature of quantum correlations.
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Experiment 1: Measurement in the Computational Basis. Suppose Alice measures her qubit in the
computational basis {|0⟩ , |1⟩}. The probability of observing outcome i ∈ {0, 1} is given by

Pr

[
= |i⟩

]
=

∥∥(|i⟩⟨i|A ⊗ IB) |Φ+⟩AB

∥∥2 ,
and the corresponding post-measurement state is

(|i⟩⟨i|A ⊗ IB) |Φ+⟩AB√
⟨Φ+|AB (|i⟩⟨i|A ⊗ IB) |Φ+⟩

AB

.

• Outcome “0”: Alice obtains outcome 0 with probability∥∥(|0⟩⟨0|A ⊗ IB) |Φ+⟩AB

∥∥2 = ∥∥∥ 1√
2
|0⟩A ⊗ |0⟩B

∥∥∥2 = 1
2 ∥|0⟩A ⊗ |0⟩B∥

2 = 1
2 ,

and the post-measurement state is
|0⟩A ⊗ |0⟩B .

• Outcome “1”: Alice obtains outcome 1 with probability∥∥(|1⟩⟨1|A ⊗ IB) |Φ+⟩AB

∥∥2 = ∥∥∥ 1√
2
|1⟩A ⊗ |1⟩B

∥∥∥2 = 1
2 ∥|1⟩A ⊗ |1⟩B∥

2 = 1
2 ,

and the post-measurement state is
|1⟩A ⊗ |1⟩B .

Therefore, once Alice measures her qubit A, she obtains a random bit; moreover, Bob’s qubit in B is
instantaneously determined to be of the exact same value, even if Bob is far away. How spooky is this?

At first glance, this phenomenon may not seem so mysterious. After all, one could imagine a purely
classical scenario: before Alice and Bob separate, a random bit is generated and written down on two
identical slips of paper. Alice receives one slip in an envelope, Bob the other. When Alice opens her
envelope and discovers the bit value, she immediately knows what Bob will find as well. In this sense, the
correlations observed in the computational basis could, in principle, be explained by pre-shared randomness
(i.e., a “local hidden variable) rather than anything uniquely quantum.

To see why entanglement is truly “spooky”, we now consider yet another experiment.

Experiment 2: Measurement in the Hadamard Basis. Now suppose Alice measures her qubit in the
Hadamard (or “plus-minus”) basis {|+⟩ , |−⟩}, where

|±⟩ = 1√
2
(|0⟩ ± |1⟩).

The probability of observing outcome j ∈ {+,−} is given by

Pr

[
= |j⟩

]
=

∥∥(|j⟩⟨j|A ⊗ IB) |Φ+⟩AB

∥∥2 ,
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and the corresponding post-measurement state is

(|j⟩⟨j|A ⊗ IB) |Φ+⟩AB√
⟨Φ+|AB (|i⟩⟨i|A ⊗ IB) |Φ+⟩

AB

.

Before we calculate the measurement outcomes, we first represent system A of the Bell state using the
Hadamard basis, rather than the computational basis; this allows us to write

|Φ+⟩AB =
1√
2

((
|+⟩A + |−⟩A√

2

)
⊗ |0⟩B +

(
|+⟩A − |−⟩A√

2

)
⊗ |1⟩B

)
.

Outcome |+⟩: The probability that Alice obtains outcome |+⟩ is

∥∥(|+⟩ ⟨+|A ⊗ IB) |Φ+⟩AB

∥∥2 = 1

2

∥∥∥∥ 1√
2
|+⟩A ⊗ |0⟩B +

1√
2
|+⟩A ⊗ |1⟩B

∥∥∥∥2
=

1

2

∥∥∥∥|+⟩A ⊗
(
|0⟩B + |1⟩B√

2

)∥∥∥∥2
=

1

2
∥|+⟩A ⊗ |+⟩B∥

2 = 1
2 .

Moreover, the corresponding post-measurement state is given by

|+⟩A ⊗ |+⟩B .

Outcome |−⟩: The probability that Alice obtains outcome

∥∥(|−⟩ ⟨−|A ⊗ IB) |Φ+⟩AB

∥∥2 = 1

2

∥∥∥∥ 1√
2
|−⟩A ⊗ |0⟩B − 1√

2
|−⟩A ⊗ |1⟩B

∥∥∥∥2
=

1

2

∥∥∥∥|−⟩A ⊗
(
|0⟩B − |1⟩B√

2

)∥∥∥∥2
=

1

2
∥|−⟩A ⊗ |−⟩B∥

2 = 1
2 .

Moreover, the corresponding post-measurement state is given by

|−⟩A ⊗ |−⟩B .

Remarkably, Bob’s state is once again perfectly correlated with Alice’s, even though Alice chose a
different measurement basis. This is much “spookier”: somehow Bob’s qubit instantaneously “knows”
what Alice measured, even though they are spatially separated over a large distance.
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EPR Paradox: Spooky Action at a Distance?

In their famous 1935 paper, Einstein, Podolsky, and Rosen argued that the phenomenon we observed
in the previous two thought experiments suggests that quantum mechanics might be incomplete. They
considered entanglement to be evidence of some underlying “hidden variables” that pre-determine out-
comes. Otherwise, how could Bob’s qubit “know” what Alice measured, seemingly instantaneously?

What bothered Einstein is that Alice’s actions seem to instantaneously influence Bob’s outcomes across
arbitrary distances—essentially “faster than light”, seemingly violating the laws of special relativity.
This apparent tension between quantum mechanics and relativity is what Einstein famously called
“spooky action at a distance.” Later developments, such as Bell’s theorem and experimental violations
of Bell inequalities, showed that no local hidden variable theory can reproduce all of the predictions of
quantum mechanics. We will revisit the resolution of this paradox in the next lecture.

Today, quantum entanglement still remains one of the deepest and most fascinating features of quantum
theory. As we will see next, it can also serve as a powerful resource for quantum protocols.
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3 Quantum Teleportation

Suppose that Alice possesses a single qubit in an arbitrary state (which may or may not be known to her)

|ψ⟩ = α |0⟩+ β |1⟩ , α, β ∈ C, |α|2 + |β|2 = 1.

Her goal is to transmit this state to Bob, who is very far away. It turns out that, if Alice and Bob already
share a Bell state of the form

A

Alice

B

BobBell state |Φ+⟩AB

then Alice can teleport the quantum information encoded in |ψ⟩ directly into Bob’s system using only local
quantum operations and some classical communication.

To carry out the quantum teleportation protocol, Alice and Bob need to perform the following quantum
computation, where the first two wires represent Alice’s qubits, and the third wire represents Bob’s qubit:

|ψ⟩ b

|Φ+⟩A a

|Φ+⟩B XaZb |ψ⟩B

H

1 2 3 4

Step 1: The joint initial state. The total system consists of Alice’s input qubit |ψ⟩ together with the
shared Bell state:

|ψ⟩ ⊗ |Φ+⟩ = (α |0⟩+ β |1⟩)⊗ 1√
2
(|00⟩+ |11⟩).

Expanding, we obtain
1√
2

(
α |000⟩+ α |011⟩+ β |100⟩+ β |111⟩

)
.

Step 2: Alice applies the CNOT gate. After the CNOT is applied, the joint state becomes

1√
2

(
α |000⟩+ α |011⟩+ β |110⟩+ β |101⟩

)
.

Step 3: Alice applies a Hadamard on the first qubit. To see what happens, we do this term-by-term:

For the α-terms:

α |000⟩ H−→ α
(
H |0⟩

)
|00⟩ = α

1√
2

(
|0⟩+ |1⟩

)
|00⟩ = α√

2

(
|000⟩+ |100⟩

)
,

α |011⟩ H−→ α
(
H |0⟩

)
|11⟩ = α√

2

(
|011⟩+ |111⟩

)
.
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For the β-terms:

β |110⟩ H−→ β
(
H |1⟩

)
|10⟩ = β

1√
2

(
|0⟩ − |1⟩

)
|10⟩ = β√

2

(
|010⟩ − |110⟩

)
,

β |101⟩ H−→ β
(
H |1⟩

)
|01⟩ = β√

2

(
|001⟩ − |101⟩

)
.

Since the state entering Step 3 carried an overall factor 1/
√
2 from Step 1, and each expansion by H

introduces another factor 1/
√
2, the total overall prefactor is 1/2. Collecting all terms yields

1

2

(
α |000⟩+ α |100⟩+ α |011⟩+ α |111⟩+ β |010⟩ − β |110⟩+ β |001⟩ − β |101⟩

)
.

Step 4: Measurement of Alice’s qubits. Alice measures her two qubits in the computational basis, be-
ginning with the first qubit with outcome b ∈ {0, 1} and the second qubit with outcome a ∈ {0, 1}, thus

(b, a) ∈ {0, 1} × {0, 1}.

Depending on the outcome, Bob’s qubit collapses into one of four possible states, as shown below:

Alice’s outcome Bob’s qubit Relation to |ψ⟩

(0, 0) α |0⟩+ β |1⟩ |ψ⟩

(1, 0) α |1⟩+ β |0⟩ X |ψ⟩

(0, 1) α |0⟩ − β |1⟩ Z |ψ⟩

(1, 1) α |1⟩ − β |0⟩ XZ |ψ⟩

In other words, if Alice’s measurement outcome is (b, a), then Bob’s qubit in system B is of the form

XaZb |ψ⟩B

where Xa = X , if a = 1, and Xa = I , if a = 0; similarly, Zb = Z, if b = 1, and Zb = I , if b = 0.
However, at this point of the protocol, Bob still cannot read this qubit without knowing what Alice

measured—it is scrambled. Thus the qubit remains “encrypted” until Alice classically communicates her
measurement results to Bob, who can then undo the transformations and recover the original qubit.

Step 5: Classical communication and recovery. Alice communicates the two classical bits (b, a) to Bob.
With this information, Bob applies the correction ZbXa to his qubit in system B, thereby recovering the
original state |ψ⟩. Importantly, Bob cannot reconstruct the state before Alice communicates her outcomes,
and Alice’s measurement irreversibly destroys her copy once and for all.

In conclusion, quantum teleportation achieves the remarkable transfer of an unknown quantum state us-
ing only entanglement and classical communication. Importantly, Alice’s is not able to transfer information
faster than light: without the use of classical communication (which is clearly susceptible to such a cosmic
speed limit), Bob has no chance at properly recovering her state.
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Experimental realizations of quantum teleportation

Quantum teleportation was originally proposed as a theoretical protocol in 1993, but it has since
been realized in a wide range of experimental platforms, including photons, trapped ions, and super-
conducting qubits. In photonic systems, teleportation experiments have even been carried out over
long distances through optical fibers and free space, demonstrating its potential for future quantum
communication networks. These milestones build directly on the pioneering experimental verification
of quantum entanglement, a line of work recognized by the 2022 Nobel Prize in Physics awarded to
Alain Aspect, John Clauser, and Anton Zeilinger. Zeilinger, in particular, and his collaborators were
among the first to demonstrate quantum teleportation of photonic states.
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