
CS 599 P1: Introduction to Quantum Computation Boston University, Fall 2025
Instructor: Alexander Poremba Scribe: Kabir Peshawaria

LECTURE # 9: SIMON’S ALGORITHM

1 Introduction to Simon’s Problem

Last time, we showed that quantum computers can solve certain problems faster than classical computers.
Specifically, we discussed a model where algorithms were given query access to “black-box oracles” for
some Boolean function f : {0, 1}n → {0, 1}, and the task was to determine whether f was constant or
balanced. We saw that deterministic classical computers required 2n−1 + 1 many oracle queries to find the
answer with probability 1. Still, this was slightly unsatisfying: with only a handful of queries, a randomized
classical algorithm can determine whether f is balanced or constant with error probability less than 0.01.

In this lecture, we will encounter Simon’s algorithm, which will give us a true exponential speedup,
even when compared against randomized algorithms that are allowed a small error probability.

Simon’s Problem

Given oracle access to a Boolean function f : {0, 1}n → {0, 1}n with the promise that there exists a
Boolean string s ∈ {0, 1}n with s ̸= 0n such that, for every pair of inputs x, y ∈ {0, 1}n,

f(x) = f(y) ⇐⇒ x⊕ y = s,

the task is to output the hidden string s.

Remark 1. In other words, the function f in an instance of Simon’s problem is always 2-to-1 and periodic
with periodicity s ∈ {0, 1}n since f(x) = f(x⊕ s) for all inputs x ∈ {0, 1}n.

x1

x1 ⊕ s

...

xk

xk ⊕ s

f(x1)

...

f(xk)

2n domain elements
2n−1 distinct images

Pairs differ by the hidden string s

Figure 1: A 2-to-1 function for Simon’s problem: each image f(x) has exactly two preimages, x and x⊕ s.
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Example: 3-bit Simon’s Problem.

Consider the Boolean function f : {0, 1}3 → {0, 1}3 with the following truth table:

x f(x)
000 101
001 010
010 000
011 110
100 000
101 110
110 101
111 010

To find hidden string s ∈ {0, 1}n, let’s look for a collision. We see that f(000) = 101 = f(110).
Therefore s = 000⊕ 110 = 110. However, we could have just as well used any collision; for example,
f(011) = 110 = f(101), so s = 011⊕ 101 = 110.

2 Simon’s Problem and Classical Computation

Before we look at quantum algorithms, let’s settle how difficult Simon’s problem is for a classical computer.

2.1 Upper Bounds

As we just discussed, a simple strategy is to find any collision f(x) = f(x′). Given such an x, x′ pair, we
are done; output s = x⊕ x′. So, how difficult is it for a classical algorithm to find a collision in f?

Deterministically, we can find a collision by querying any 2n−1+1 inputs. By the pigeonhole principle,
there must be a collision as the image of f , denoted Image(f), has size 2n−1. We can do better.

Remark 2. Advice to reader: if you are not deeply familiar with Big O notation, please refer to the appendix
of these lecture notes before continuing.

Using randomness Using randomness, we can find a collision with probability 3
4 using only O(2n/2)

queries! This follows by the Birthday paradox, which states that if we pick around Ω(
√
N) items uniformly

at random with replacement from a set of size N , we will pick the same item twice with probability at least
3
4 . In our setting, the set of items is the image of function f (i.e. the set of all 2n−1 possible outputs). We
pick an item y uniformly at random by picking x ∈R {0, 1}n uniformly at random (with replacement) and
evaluating y = f(x). After Ω(2(n−1)/2) = Ω(2n/2) queries, we have seen y twice with high probability,
and can take s to be the XOR of the preimages of y.

There is a small technicality in our argument above, as it could be the case that we saw some y ∈
Image(f) twice, but also the same preimage x ∈ {0, 1}n twice. This is solved by recognizing that it is
equally likely to see the same preimage twice as it is to see two different preimages, so if we see k pairs of
collisions, with probability 1− (12)

k, we saw a true collision.
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Without randomness In fact, we do not even need randomness! There is a deterministic algorithm that
makes O(2n/2) queries and finds s without any error loss. For simplicity, assume n = 2m, i.e. n is even.
Then let S1 = {(x||0m) : x ∈ {0, 1}m} and S2 = {(0m||y) : y ∈ {0, 1}m}, where || denotes string
concatenation. Take S = S1 ∪ S2. This set has size ≤ 2 · 2m = 2(n/2)+1. For every s ∈ {0, 1}n, we can
write s = (s1||s2) = (s1||0m)⊕ (0m||s2).

2.2 Lower Bounds

We will now show that any classical algorithm (even randomized) that succeeds in finding s ∈ {0, 1}n with
probability at least Ω(1) requires exponentially many queries to f .

Lemma 2.1. A (possibly randomized) classical algorithm for Simon’s problem with error probability at
most 1

4 requires Ω(2n/2) queries to the black-box oracle for f .

This proof sketch is a bit involved, so feel free to skip it. The main takeaway is that classical algorithms
require an exponential number of queries to solve Simon’s problem.

Proof. Let’s say that a classical algorithm makes q queries, x1, . . . , xq ∈ {0, 1}n to the oracle for function
f . The only way the algorithm can learn the hidden string s is by finding a collision (finding two distinct
inputs xi ̸= xj such that f(xi) = f(xj). If it does, it found s, since s = xi ⊕ xj .

Let’s define the set of all possible collision-producing differences from the queries made:

D := {xi ⊕ xj | 1 ≤ i < j ≤ q}.

A collision is found if and only if the true hidden string s happens to lie in this set D. The size of this set is
at most |D| ≤

(
q
2

)
< q2

2 .
Now, assume the hidden string s is chosen uniformly at random from the 2n − 1 possible non-zero

strings. The probability of finding a collision is the probability that s falls into our set D:

P (find collision) =
|D|

2n − 1
≤ q2/2

2n − 1
.

What if the algorithm does not find a collision? This happens with high probability if q is small. In this
case, the algorithm receives q distinct function values. The key insight is as follows. This set of q query-
answer pairs is consistent with every potential period s′ /∈ D. The algorithm has absolutely no information
to distinguish the true period s from any other candidate in the set of possibilities {0, 1}n \ (D ∪ {0n}).

So, if no collision is found, the algorithm’s best chance is to guess one of the remaining possibilities.
The number of such possibilities is at least (2n−1)−|D|. The probability of guessing correctly is therefore:

P (succeed without collision) ≤ 1

(2n − 1)− |D|
.

The total probability of success is bounded by the sum of the probabilities of these two disjoint events
(finding a collision, or succeeding by guessing without one):

P (Success) ≤ P (find collision) + P (succeed without collision) ≈ q2/2

2n
+

1

2n − q2/2
.
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For the total success probability to be constant, the first term, q2/2
2n , must be a constant. (The second term is

exponentially small and negligible). For this term to be a constant Ω(1):

q2

2n
= Ω(1) =⇒ q2 = Ω(2n) =⇒ q = Ω(2n/2).

Therefore, any classical algorithm needs Ω(2n/2) queries to succeed with constant probability.

Remark 3 (Note on Boosting). The reason it suffices to consider constant success probability is because
of a technique called boosting. If you have a randomized algorithm that has error probability less than
p ∈ (0, 1) for a problem where you can easily verify if the answer is correct, you can run the algorithm
multiple times to decrease the error probability. If you run the algorithm t times, your error probability
becomes pt. So, for any arbitrarily desired small constant error probability, you only need to repeat the
algorithm O(1) times to achieve this.

3 Simon’s (Quantum) Algorithm

We are now going to show Simon’s algorithm, a classical-quantum hybrid algorithm that only requires
O(n) many calls to f to find s with probability at least ≈ 0.288. This is an impressive speedup from
the exponential many queries required by a classical computer, and it comes from cleverly exploiting the
periodicity and structure promised in the function f : {0, 1}n → {0, 1}n.

Simon’s 1994 algorithm directly inspired Peter Shor, who recognized that many number-theoretic prob-
lems, including factoring and discrete logarithms, could also be recast as hidden-period problems.

Overview The algorithm proceeds in two phases. In phase one, we run a quantum subroutine n− 1 times.
Each subroutine will make one call to the oracle Uf . This will output n−1 strings y(1), . . . , y(n−1) ∈ {0, 1}n

where each y(i) satisfies
∑n−1

j=0 y
(i)
j · sj ≡ 0 (mod 2). In phase two, we run some classical post-processing.

We write an n− 1× n dimensional matrix M where the ith row, denoted Mi, is the string y(i) ∈ {0, 1}n

3.1 Phase One: Quantum Subroutine

Recap of Uf unitary and logical registers We remind the reader that Uf is the unitary that implements
the Boolean function f : {0, 1}n → {0, 1}n. Specifically, Uf acts on 2n qubits in a computational basis
state |x⟩ ⊗ |y⟩ for x, y ∈ {0, 1}n like so:

Uf |x⟩ |y⟩ = |x⟩ |y ⊕ f(x)⟩ .

Sometimes, it’s nice to logically group qubits into registers. In the above, we call the first n qubits the “input
register” and the last n qubits the “output register”. This grouping makes sense, since if you wanted to know
what f(x) is for a particular x ∈ {0, 1}n, you could prepare the computational basis state |x⟩ |0⟩, apply
the Uf unitary, and measure the output register, which will always have amplitude 1 on computational basis
state |f(x)⟩.

For illustration, let us suppose the function is of the form f : {0, 1}3 → {0, 1}3. The first three qubits
correspond to the input register and the last three to the output register. The value y ∈ {0, 1}3 is the
measurement outcome of the input register.

Let us analyze this circuit (generalized to work over 2n qubits) step by step.
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Figure 2: Simon’s algorithm.

Step 1 After applying H⊗n ⊗ I⊗n to the state |ϕ0⟩ := |0n⟩ |0n⟩, the input register is transformed to the
uniform superposition.

|ϕ1⟩ =
1√
2n

∑
x∈{0,1}n

|x⟩I ⊗ |0n⟩O .

Step 2 After applying Uf to the state |ϕ1⟩, we get the following:

|ϕ2⟩ =
1√
2n

∑
x∈{0,1}n

|x⟩I ⊗ |f(x)⟩O

Step 3 We can logically see step three as an measurement on the output register and a unitary operator
acting on the input register. Since these actions are local to each register, they can be performed in any order.
It makes the analysis a little simpler to consider measuring the output register first, yielding f(z) ∈ {0, 1}n
for some z ∈ {0, 1}n. By the 2-to-1 property of the periodic function f : {0, 1}n → {0, 1}n, with
probability 1

2n we will get the post-measurement state of

1√
2
(|z⟩I + |z ⊕ s⟩)⊗ |f(z)⟩

Let’s forget about the output register, and let z ∈ {0, 1}n (we have two choices, we can choose arbitrarily)
be such that our input register is now in the state 1√

2
(|z⟩+ |z ⊕ s⟩).

We now apply H⊗n to the input register. What is the new state? Let’s break this down. First what
happens when we apply H⊗n to the computational basis state |z⟩? Recall by definition of H:

• H |0⟩ = 1√
2

∑
x∈{0,1}(−1)x·0 |x⟩.

• H |1⟩ = 1√
2

∑
x∈{0,1}(−1)x·1 |x⟩.
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Therefore,

H⊗n |z⟩ = 1√
2n

∑
y1∈{0,1}

∑
y2∈{0,1}

. . .
∑

yn∈{0,1}

(−1)z1·y1(−1)z2·y2 . . . (−1)zn·yn |y1y2 · · · yn⟩ .

=
1√
2n

∑
y∈{0,1}n

(−1)⟨y,z⟩ |y⟩ .

This means that our state after step 3 is:

|ϕ3⟩ =
1√
2
· 1√

2n

 ∑
y∈{0,1}n

(−1)⟨y,z⟩ |y⟩+ (−1)⟨y,z⊕s⟩ |y⟩


=

1√
2n+1

 ∑
y∈{0,1}n

(−1)⟨y,z⟩(1 + (−1)⟨y,s⟩) |y⟩


Step 4 Now we measure the state; ∀y ∈ {0, 1}n such that ⟨y, s⟩ ≡ 1 (mod 2), the state |ϕ4⟩ has amplitude
0 on basis state |y⟩. For every other y ∈ {0, 1}n, the amplitude is (−1)⟨y,z⟩ ·2 · 1√

2n+1
= (−1)⟨y,z⟩ · 1√

2(n−1)
.

Conclusion of Quantum Subroutine For every y ∈ {0, 1}n such that ⟨y, z⟩ ≡ 0 (mod 2), it is measured
with probability 1

2n−1 . Note that there are exactly 2n−1 such y’s, so they are all occurring with equal
probability.

3.2 Phase Two

At this point, we have run the quantum subroutine n− 1 times and received n− 1 strings y(1), . . . , y(n−1) ∈
{0, 1}n such that ⟨y(i), s⟩ ≡ 0 (mod 2) for all i.

Detour: Linear Algebra over F2 To fully understand this part, we need to depart from our nice linear
algebra over Hilbert spaces and think about the binary field. The set {0, 1} equipped with addition (mod 2)
and multiplication (mod 2) forms a field, denoted F2. For ease of notation, we will now just call this field F.
The familiar n dimensional vector space over F is called Fn. If we view our vectors y(1), . . . , y(n−1), s ∈ Fn

as elements (read: column vectors) of the vector space Fn, then we can say that that y⊤s = 0 for every
y ∈ {y(1), . . . , y(n−1)}, where this is an F-matrix multiplication.

Description of the phase We will construct a matrix M ∈ F(n−1)×n on n − 1 rows and n columns with
entries living in F. Specifically, the ith row of M is the string y(i). Using Gaussian Elimination, we will
find a nonzero solution x ∈ {0, 1}n to the linear system of n− 1 equations Mx = 0, where 0 is the all zero
vector in Fn−1. We will output this value.1

Detour: The Rank-Nullity Theorem Recall that for a matrix A ∈ Fk×n with rank r = rank(A), its
nullspace (or kernel), ker(A) = {v ∈ Fn : Av = 0}, is a subspace of Fn. The Rank-Nullity theorem states
that rank(A) + dim(ker(A)) = n. Therefore, the dimension of the nullspace is n− r.

1If we are using boosting, we may want to check whether f(0) = f(x) to verify whether this iteration of the entire algorithm
got the correct answer.
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Intuition for the Analysis. We claim that if the vectors y(1), . . . , y(n−1) are linearly independent over F2,
then our algorithm is guaranteed to output s. Let’s see why.

If the y(i) vectors (the rows of M ) are linearly independent, then the matrix M has full rank, i.e.,
rank(M) = n− 1. By the Rank-Nullity theorem, the dimension of its nullspace is:

dim(ker(M)) = n− rank(M) = n− (n− 1) = 1

A one-dimensional vector space over the field F contains exactly |F|1 = 21 = 2 vectors. These vectors are
the trivial solution, 0 ∈ Fn, and one other unique non-zero vector: the hidden string s ∈ {0, 1}n.

3.3 Analysis of Success Probability

The final question to ask is: what is the probability that the n−1 vectors we sample are linearly independent?
We are sampling vectors y uniformly at random subject to the constraint that y⊤s = 0. This means

we are sampling from the (n− 1)-dimensional subspace of Fn orthogonal to the one-dimensional subspace
{0, s} that is spanned by s. For notational convience, let’s introduce the integer

m := n− 1.

Our task is to find the probability that m vectors chosen uniformly at random from an m-dimensional vector
space over F are linearly independent.

We can calculate this by finding the probability that each new vector is linearly independent to the
preceding ones.

• The first vector, y(1), is linearly independent as long as it’s not the zero vector. Since there are 2m

total vectors in our sampling space, the probability of this is:

P (y(1) ̸= 0) =
2m − 1

2m

• Given that y(1), . . . , y(i) are linearly independent, they span an i-dimensional subspace which contains
2i vectors. For the next vector, y(i+1), to be linearly independent from the previous ones, it must not
lie in this span. There are 2m − 2i such vectors.

The conditional probability is therefore:

P (y(i+1) /∈ span{y(1), . . . , y(i)}) = 2m − 2i

2m

The total probability of finding a linearly independent set of m vectors is the product of these probabili-
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ties for i from 0 to m− 1:

P (all m are linearly independent) =
m−1∏
i=0

2m − 2i

2m

=

(
2m − 1

2m

)(
2m − 2

2m

)(
2m − 4

2m

)
· · ·

(
2m − 2m−1

2m

)
=

m−1∏
i=0

(
1− 2i

2m

)

=

m∏
k=1

(
1− 1

2k

)
(re-indexing with k = m− i)

≥
∞∏
k=1

(
1− 1

2k

)
≈ 0.2887.

So, one iteration of Simon’s algorithm succeeds with probability at least 0.28, which (for any ϵ > 0) can
be boosted to success probability 1− ϵ by repeating the algorithm O(1) times.

Appendix: Big O Notation

For readers who might not be familiar with it, this section is a quick refresher on Big O notation. In short,
it’s a way to describe the long-term behavior of functions, which is useful for analyzing algorithms.

Big O: Asymptotic Upper Bound

We use Big O notation to describe an upper bound on a function’s growth rate. If we say f(n) = O(g(n)),
we mean that for all sufficiently large n, f(n) is “overpowered” by some constant multiple of g(n).

Definition 3.1. For functions f, g : N → R≥0, we say f(n) = O(g(n)) if there exist constants c > 0 and
n0 ∈ N such that for all n ≥ n0, we have

f(n) ≤ c · g(n).

For example, when analyzing polynomials, only the highest-degree term matters asymptotically.

• 3n = O(n2)

• 3n2 + 500n+ 312 = O(n2)

• log n = O(n)

Big Omega (Ω): Asymptotic Lower Bound

Big Omega provides a lower bound. If f(n) = Ω(g(n)), it means that f(n) grows at least as fast as some
constant multiple of g(n) for all large n.
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Definition 3.2. For functions f, g : N → R≥0, we say f(n) = Ω(g(n)) if there exist constants c > 0 and
n0 ∈ N such that for all n ≥ n0, we have

f(n) ≥ c · g(n).

For example:

• 3n2 = Ω(n2)

• 3n2 + 500n+ 312 = Ω(n log999 n)

• n0.00001 = Ω(log99999(n) + 999999999)

Big Theta (Θ): Asymptotic Tight Bound

Big Theta gives us a tight bound. If f(n) = Θ(g(n)), it means f(n) and g(n) grow at the same rate, up to
constant factors. It’s often the most informative of the three.

It’s defined simply as: f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and f(n) = Ω(g(n)).
This essentially “sandwiches” f(n) between two different constant multiples of g(n).
For example:

• 3n2 + 500n+ 312 = Θ(n2)

• n ̸= Θ(n2), because while n = O(n2), it is not Ω(n2).
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