CS 599 P1: Introduction to Quantum Computation Boston University, Fall 2025
Instructor: Alexander Poremba Scribe: Kabir Peshawaria

LECTURE # 9: SIMON’S ALGORITHM

1 Introduction to Simon’s Problem

Last time, we showed that quantum computers can solve certain problems faster than classical computers.
Specifically, we discussed a model where algorithms were given query access to “black-box oracles” for
some Boolean function f : {0,1}" — {0, 1}, and the task was to determine whether f was constant or
balanced. We saw that deterministic classical computers required 2"~ + 1 many oracle queries to find the
answer with probability 1. Still, this was slightly unsatisfying: with only a handful of queries, a randomized
classical algorithm can determine whether f is balanced or constant with error probability less than 0.01.

In this lecture, we will encounter Simon’s algorithm, which will give us a true exponential speedup,
even when compared against randomized algorithms that are allowed a small error probability.

Simon’s Problem

Given oracle access to a Boolean function f : {0,1}" — {0, 1}" with the promise that there exists a
Boolean string s € {0, 1}" with s # 0™ such that, for every pair of inputs x,y € {0,1}",

fl)=fly) <= z0y=s5,

the task is to output the hidden string s.

Remark 1. In other words, the function f in an instance of Simon’s problem is always 2-to-1 and periodic
with periodicity s € {0,1}" since f(x) = f(x @ s) for all inputs x € {0,1}".

Pairs differ by the hidden string s

L=];;[fe)]

wes)

271 distinct images
2™ domain elements

[T];;[fzk) j

TR DS j

'S

Figure 1: A 2-to-1 function for Simon’s problem: each image f(x) has exactly two preimages, x and = @ s.

Example: 3-bit Simon’s Problem.

Consider the Boolean function f : {0,1}? — {0, 1} with the following truth table:

x | f(x)
000 | 101
001 | 010
010 | 000
011 | 110
100 | 000
101 | 110
110 | 101
111 | 010

To find hidden string s € {0, 1}", let’s look for a collision. We see that f(000) = 101 = f(110).
Therefore s = 000 @ 110 = 110. However, we could have just as well used any collision; for example,
f(011) =110 = f(101),so s = 011 & 101 = 110.

2 Simon’s Problem and Classical Computation

Before we look at quantum algorithms, let’s settle how difficult Simon’s problem is for a classical computer.

2.1 Upper Bounds

As we just discussed, a simple strategy is to find any collision f(z) = f(z’). Given such an z, 2’ pair, we
are done; output s = x @ z’. So, how difficult is it for a classical algorithm to find a collision in f?

Deterministically, we can find a collision by querying any 2”1 + 1 inputs. By the pigeonhole principle,
there must be a collision as the image of f, denoted Image(f), has size 2"~ 1. We can do better.

Remark 2. Advice to reader: if you are not deeply familiar with Big O notation, please refer to the appendix
of these lecture notes before continuing.

Using randomness Using randomness, we can find a collision with probability % using only 0(2”/)
queries! This follows by the Birthday paradox, which states that if we pick around Q(\/N) items uniformly
at random with replacement from a set of size IV, we will pick the same item twice with probability at least
%. In our setting, the set of items is the image of function f (i.e. the set of all 2"~ possible outputs). We
pick an item y uniformly at random by picking € {0, 1}" uniformly at random (with replacement) and
evaluating y = f(x). After Q(2("~1/2) = Q(2"/2) queries, we have seen y twice with high probability,
and can take s to be the XOR of the preimages of y.

There is a small technicality in our argument above, as it could be the case that we saw some y &€
Image(f) twice, but also the same preimage x € {0,1}" twice. This is solved by recognizing that it is
equally likely to see the same preimage twice as it is to see two different preimages, so if we see k pairs of
collisions, with probability 1 — (%)k, we saw a true collision.

Without randomness In fact, we do not even need randomness! There is a deterministic algorithm that
makes 0(2"/ 2) queries and finds s without any error loss. For simplicity, assume n = 2m, i.e. n is even.
Then let S; = {(z][0™) : € {0,1}""} and S2 = {(0™||y) : y € {0,1}™}, where || denotes string
concatenation. Take S = S U S,. This set has size < 2 - 2™ = 2(%/2)+1 For every s € {0,1}", we can
write s = (s1][s2) = (s1]|0™) & (0™]]s2).

2.2 Lower Bounds

We will now show that any classical algorithm (even randomized) that succeeds in finding s € {0, 1}" with
probability at least (1) requires exponentially many queries to f.

Lemma 2.1. A (possibly randomized) classical algorithm for Simon’s problem with error probability at
most % requires 9(2”/ 2) queries to the black-box oracle for f.

This proof sketch is a bit involved, so feel free to skip it. The main takeaway is that classical algorithms
require an exponential number of queries to solve Simon’s problem.

Proof. Let’s say that a classical algorithm makes ¢ queries, 1,...,z, € {0,1}" to the oracle for function
f. The only way the algorithm can learn the hidden string s is by finding a collision (finding two distinct
inputs x; # x; such that f(z;) = f(z;). If it does, it found s, since s = x; @ x;.

Let’s define the set of all possible collision-producing differences from the queries made:

D::{xi®xj|1§i<j§q}.

A collision is found if and only if the true hidden string s happens to lie in this set D. The size of this set is
atmost |D| < () < %.

Now, assume the hidden string s is chosen uniformly at random from the 2" — 1 possible non-zero
strings. The probability of finding a collision is the probability that s falls into our set D:

2
Dl /2
2n 1~ 2n 1

P(find collision) =

What if the algorithm does not find a collision? This happens with high probability if ¢ is small. In this
case, the algorithm receives ¢ distinct function values. The key insight is as follows. This set of ¢ query-
answer pairs is consistent with every potential period s’ ¢ D. The algorithm has absolutely no information
to distinguish the true period s from any other candidate in the set of possibilities {0,1}" \ (D U {0"}).
So, if no collision is found, the algorithm’s best chance is to guess one of the remaining possibilities.
The number of such possibilities is at least (2" — 1) — | D|. The probability of guessing correctly is therefore:

1

P(Succeed without COHiSiOH) S m

The total probability of success is bounded by the sum of the probabilities of these two disjoint events
(finding a collision, or succeeding by guessing without one):
/2 1

P(Success) < P(find collision) + P(succeed without collision) = 5 + i

2
For the total success probability to be constant, the first term, ’12#, must be a constant. (The second term is

exponentially small and negligible). For this term to be a constant {2(1):
L _0(1) = #=0@2") = ¢=02"?.

Therefore, any classical algorithm needs 9(2”/ 2) queries to succeed with constant probability. 0

Remark 3 (Note on Boosting). The reason it suffices to consider constant success probability is because
of a technique called boosting. If you have a randomized algorithm that has error probability less than
p € (0,1) for a problem where you can easily verify if the answer is correct, you can run the algorithm
multiple times to decrease the error probability. If you run the algorithm t times, your error probability
becomes p'. So, for any arbitrarily desired small constant error probability, you only need to repeat the
algorithm O(1) times to achieve this.

3 Simon’s (Quantum) Algorithm

We are now going to show Simon’s algorithm, a classical-quantum hybrid algorithm that only requires
O(n) many calls to f to find s with probability at least ~ 0.288. This is an impressive speedup from
the exponential many queries required by a classical computer, and it comes from cleverly exploiting the
periodicity and structure promised in the function f : {0,1}" — {0, 1}".

Simon’s 1994 algorithm directly inspired Peter Shor, who recognized that many number-theoretic prob-
lems, including factoring and discrete logarithms, could also be recast as hidden-period problems.

Overview The algorithm proceeds in two phases. In phase one, we run a quantum subroutine n — 1 times.
Each subroutine will make one call to the oracle Uy. This will output n—1 strings y Wy e {0,1}"

where each y(?) satisfies Z}:& yg-i) -s; =0 (mod 2). In phase two, we run some classical post-processing.
We write an n — 1 x n dimensional matrix M where the ith row, denoted M, is the string y® € {0,1}"

3.1 Phase One: Quantum Subroutine

Recap of U; unitary and logical registers We remind the reader that Uy is the unitary that implements
the Boolean function f : {0,1}" — {0,1}". Specifically, U acts on 2n qubits in a computational basis
state |x) ® |y) for z,y € {0,1}" like so:

Urlz) |y) = |z) |y @ f(x)) .

Sometimes, it’s nice to logically group qubits into registers. In the above, we call the first n qubits the “input
register” and the last n qubits the “output register”. This grouping makes sense, since if you wanted to know
what f(z) is for a particular z € {0,1}", you could prepare the computational basis state |x) |0), apply
the Uy unitary, and measure the output register, which will always have amplitude 1 on computational basis
state | f(x)).

For illustration, let us suppose the function is of the form f : {0,1}% — {0, 1}3. The first three qubits
correspond to the input register and the last three to the output register. The value y € {0,1}? is the
measurement outcome of the input register.

Let us analyze this circuit (generalized to work over 2n qubits) step by step.

Figure 2: Simon’s algorithm.

Step 1 After applying H®" ® I®™ to the state |¢g) := |0™) |0™), the input register is transformed to the

uniform superposition.
1

|¢>1>=\/2—n Yo e,

ze{0,1}m

Step 2 After applying Uy to the state |¢1), we get the following:

62) = \/} Y) @ lf@)o

ze€{0,1}"

Step 3 We can logically see step three as an measurement on the output register and a unitary operator
acting on the input register. Since these actions are local to each register, they can be performed in any order.
It makes the analysis a little simpler to consider measuring the output register first, yielding f(z) € {0,1}"
for some z € {0,1}". By the 2-to-1 property of the periodic function f : {0,1}" — {0,1}", with
probability 2% we will get the post-measurement state of

} (I2); + 2@ 5)) ® |£(2)

2
Let’s forget about the output register, and let z € {0, 1}" (we have two choices, we can choose arbitrarily)

be such that our input register is now in the state % (Iz) + |z @ s)).

We now apply H®" to the input register. What is the new state? Let’s break this down. First what
happens when we apply H®" to the computational basis state |z)? Recall by definition of H:

s H|0) = 5 reony (-D)7 |2).

* H1) = 53 e (D)™ o).

Therefore,

H®" |z)

Z Z Z VEYL(—1)222 (—1) U |y -)

y16{0 1} y2€{0,1} yne{O 1}

- = > V),

y€{0,1}"

—_

5

This means that our state after step 3 is:

%) = \}5 \/127) n(—1)<y,z> [y) + (=1) = |y)
ye{0,1}

1
o) D SILLICEN LN
2 i ye{0,1}

Step4 Now we measure the state; Vy € {0, 1}" such that (y,s) = 1 (mod 2), the state |¢4) has amplitude

0 on basis state |y). For every other y € {0, 1}", the amplitude is (—1)¥* . 2. \/Qiﬁ = (=1)w2).

9(n—1)"

Conclusion of Quantum Subroutine For every y € {0, 1}" such that (y, z) = 0 (mod 2), it is measured
with probability 2,%1 Note that there are exactly 2"~! such 3’s, so they are all occurring with equal
probability.

3.2 Phase Two

At this point, we have run the quantum subroutine n — 1 times and received n — 1 strings y(), ..., y(»~1 ¢
{0,1}™ such that (y(, s) = 0 (mod 2) for all 3.

Detour: Linear Algebra over Fy To fully understand this part, we need to depart from our nice linear
algebra over Hilbert spaces and think about the binary field. The set {0, 1} equipped with addition (mod 2)
and multiplication (mod 2) forms a field, denoted [F5. For ease of notation, we will now just call this field F.

The familiar n dimensional vector space over F is called F". If we view our vectors y(1), ...,y s e F»
as elements (read: column vectors) of the vector space ", then we can say that that y's = 0 for every
Yy € {y(l), e y("_l)}, where this is an F-matrix multiplication.

Description of the phase We will construct a matrix M € F(»~1*" on 5 — 1 rows and n columns with
entries living in F. Specifically, the ith row of M is the string 3(?). Using Gaussian Elimination, we will
find a nonzero solution x € {0, 1}" to the linear system of n — 1 equations Mz = 0, where 0 is the all zero
vector in F*~1. We will output this value.'

Detour: The Rank-Nullity Theorem Recall that for a matrix A € F**" with rank r = rank(A), its
nullspace (or kernel), ker(A) = {v € F" : Av = 0}, is a subspace of F". The Rank-Nullity theorem states
that rank(A) + dim(ker(A)) = n. Therefore, the dimension of the nullspace is n — 7.

'If we are using boosting, we may want to check whether f(0) = f(z) to verify whether this iteration of the entire algorithm
got the correct answer.

Intuition for the Analysis. We claim that if the vectors yV), ..., y("~) are linearly independent over [y,
then our algorithm is guaranteed to output s. Let’s see why.

If the y(i) vectors (the rows of M) are linearly independent, then the matrix M has full rank, i.e.,
rank(M) = n — 1. By the Rank-Nullity theorem, the dimension of its nullspace is:

dim(ker(M)) =n —rank(M)=n—(n—1)=1

A one-dimensional vector space over the field F contains exactly |F|! = 2! = 2 vectors. These vectors are
the trivial solution, 0 € F™, and one other unique non-zero vector: the hidden string s € {0, 1}".

3.3 Analysis of Success Probability

The final question to ask is: what is the probability that the n—1 vectors we sample are linearly independent?

We are sampling vectors y uniformly at random subject to the constraint that y ' s = 0. This means
we are sampling from the (n — 1)-dimensional subspace of F" orthogonal to the one-dimensional subspace
{0, s} that is spanned by s. For notational convience, let’s introduce the integer

m:=n— 1.

Our task is to find the probability that m vectors chosen uniformly at random from an m-dimensional vector
space over I are linearly independent.

We can calculate this by finding the probability that each new vector is linearly independent to the
preceding ones.

* The first vector, y(1), is linearly independent as long as it’s not the zero vector. Since there are 2"
total vectors in our sampling space, the probability of this is:

2m—1
Py #£0) ==
* Giventhaty™), ... y(® are linearly independent, they span an i-dimensional subspace which contains

2t vectors. For the next vector, y(“t1), to be linearly independent from the previous ones, it must not
lie in this span. There are 2" — 2* such vectors.

The conditional probability is therefore:

om _ 9t

Pyt ¢ span{y®,..y}) = =0

The total probability of finding a linearly independent set of m vectors is the product of these probabili-

ties for ¢ from 0 to m — 1:

-(%))) ()

So, one iteration of Simon’s algorithm succeeds with probability at least 0.28, which (for any € > 0) can
be boosted to success probability 1 — € by repeating the algorithm O(1) times.

Appendix: Big O Notation

For readers who might not be familiar with it, this section is a quick refresher on Big O notation. In short,
it’s a way to describe the long-term behavior of functions, which is useful for analyzing algorithms.
Big O: Asymptotic Upper Bound

We use Big O notation to describe an upper bound on a function’s growth rate. If we say f(n) = O(g(n)),
we mean that for all sufficiently large n, f(n) is “overpowered” by some constant multiple of g(n).

Definition 3.1. For functions f,g : N — R>q, we say f(n) = O(g(n)) if there exist constants ¢ > 0 and
ng € N such that for all n > ng, we have

f(n) <c-g(n).
For example, when analyzing polynomials, only the highest-degree term matters asymptotically.
s 3n = 0(n?)
* 3n% +500n + 312 = O(n?)
* logn = 0O(n)

Big Omega (2): Asymptotic Lower Bound

Big Omega provides a lower bound. If f(n) = Q(g(n)), it means that f(n) grows at least as fast as some
constant multiple of g(n) for all large n.

Definition 3.2. For functions f,g : N — R>q, we say f(n) = Q(g(n)) if there exist constants ¢ > 0 and
ng € N such that for all n > ng, we have

f(n) = c-g(n).
For example:
s 3n? = Q(n?)
* 3n2 + 500n 4 312 = Q(nlog? n)

e 000001 — (1659999 (1) 4 999999999)

Big Theta (O): Asymptotic Tight Bound

Big Theta gives us a tight bound. If f(n) = O(g(n)), it means f(n) and g(n) grow at the same rate, up to
constant factors. It’s often the most informative of the three.

It’s defined simply as: f(n) = ©(g(n)) if and only if f(n) = O(g(n)) and f(n) = Q(g(n)).
This essentially “sandwiches” f(n) between two different constant multiples of g(n).
For example:

* 3n% +500n + 312 = ©(n?)

» n # O(n?), because while n = O(n?), it is not Q(n?).

	Introduction to Simon's Problem
	Simon's Problem and Classical Computation
	Upper Bounds
	Lower Bounds

	Simon's (Quantum) Algorithm
	Phase One: Quantum Subroutine
	Phase Two
	Analysis of Success Probability

