
CS 599 P1: Introduction to Quantum Computation Boston University
Instructor: Alexander Poremba Fall 2025

PRACTICE WORKSHEET #1

This is a practice worksheet—it will not be graded and is meant to refresh your memory of complex
numbers and linear algebra. I strongly encourage you to work through these problems by yourself, ideally
by Tuesday, September 9th—before the first homework assignment is out. Solutions will be posted 09/07.

Problem 1 (Complex numbers). A complex number z ∈ C is of the form z = a+ bi where a, b ∈ R and
i is the imaginary unit with i2 = −1. Here, a = Re(z) denotes the real part of z, and b = Im(z) denotes
the imaginary part of z. Complex numbers have the following key properties:

• Addition: (a+ bi) + (c+ di) = (a+ c) + (b+ d)i

• Multiplication: (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i

• Complex conjugate: z = a− bi

• Modulus: |z| =
√
a2 + b2

• Unit circle: Complex numbers with |z| = 1 lie on the unit circle (see Figure 1).

• Rotations: Multiplication by i rotates a point by 90◦ counterclockwise on the complex plane, whereas
multiplication by −1 a point reflects across the origin.
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Figure 1: Any complex number z ∈ C can be written as z = a + bi, and can therefore be represented as a
point on the complex plane. Here, the horizontal axis represents the real part, and the vertical axis represents
the imaginary part. Whenever z has modulus |z| = 1, it lies on the unit circle, as pictured above.
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Exercises:

1. Calculate the product (1 + i)(1− i).

2. Determine the complex conjugate and modulus of z = 1√
2
− 1√

2
i.

3. Describe the geometric effect of multiplying z = 1 + i by −i.

Problem 2 (Complex vector spaces). A vector space over the complex numbers (or a complex vector
space) is a set V of elements (called vectors) together with two natural operations: addition and (scalar)
multiplication. The canonical example of a complex vector space is V = Cn with

Cn =

v =

v1
...
vn

 : vi ∈ C for i = 1, . . . , n


where each of the n entries of a vector v ∈ Cn is a complex number. Here, the addition operation over Cn

is defined component-wise, such that

v + u =

v1
...
vn

+

u1
...
un

 =

v1 + u1
...

vn + un

 , ∀v,u ∈ Cn.

Moreover, the multiplication operation by a scalar, α ∈ C, is defined as follows:

α · v = α ·

v1
...
vn

 =

α · v1
...

α · vn

 , ∀v ∈ Cn.

Complex vector spaces, such as the canonical space V = Cn, have a number of important characteristics
and properties. We list some of these properties below:

• Vectors: a vector v ∈ Cn typically represents a so-called column vector; however, there is also the
notion of a row vector. Below, we compare these two kinds of representations:

(column vectors) v =


v1
v2
...
vn

 ; (row vectors) v⊺ = (v1, v2, . . . , vn) =


v1
v2
...
vn


⊺

.

• Complex adjoint: given a vector v ∈ Cn, we denote its complex adjoint by v†. This is the vector we
get by taking the complex conjugate of all of the entries of v, and then applying the transpose of v.
In other words, we define v† := (v)⊺, which results in the row vector

v† =


v1
v2
...
vn


⊺

= (v1, v2, . . . , vn).
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• Inner product: In general, a complex vector space does not feature a multiplication rule between
pairs of vectors u,v. The vector space V = Cn, however, can be equipped with an inner product:

⟨v,u⟩ = v† · u =
n∑

k=1

vk · uk, ∀v,u ∈ Cn.

Because v† is a row vector and u is a column vector, this can be thought of as a form of matrix
multiplication between a (1× n) matrix and an (n× 1) matrix.

The inner product ⟨·, ·⟩ over Cn has the following properties:

(Positivity)

⟨v,v⟩ > 0, ∀v ∈ Cn \ {0}

(Skew symmetry)

⟨v,u⟩ = ⟨u,v⟩ ∀v,u ∈ Cn

(Linearity)

⟨v, αu+ βw⟩ = α⟨v,u⟩+ β⟨v,w⟩
⟨αv + βu,w⟩ = α ⟨v,w⟩+ β ⟨u,w⟩ ∀v,u,w ∈ Cn, α, β ∈ C.

Note that the conjugation rule in the linearity property only applies to the first argument.

• Euclidean norm: The Euclidean norm of a vector v ∈ Cn is defined as ∥v∥ =
√
⟨v,v⟩.

• Linear independence: A set of vectors {v1, . . . ,vr} ⊆ V is linearly independent if the only solution
to the equation,

λ1v1 + λ2v2 + · · ·+ λrvr = 0,

is λ1 = λ2 = · · · = λr = 0, where λi ∈ C.

• Span: The span of a set of vectors {v1, . . . ,vr} ⊆ V is the set of all possible (complex) linear
combinations of those vectors, i.e.,

span{v1, . . . ,vr} =
{
λ1v1 + · · ·+ λrvr : λi ∈ C for i = 1, . . . , r

}
.

• Basis: A subset B = {b1, . . . ,bn} ⊆ V is called a basis of a complex vector space V , if the vectors
{b1, . . . ,bn} are all linearly independent and span the entire space V ; in other words, every vector
v ∈ V can be written as a linear combination

v = λ1b1 + λ2b2 + · · ·+ λnbn

for some λ1, . . . , λn ∈ C. If the vector space V admits a basis with n elements, we say V has
dimension dim(V ) = n. An example of such a vector space is V = Cn, which is n-dimensional and
admits the basis B = {e1, . . . , en}, where ei are the canonical basis vectors

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , · · · , en =


0
0
...
1

 .

Note that we will only consider finite-dimensional vector spaces in this class.
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• Orthogonal and orthonormal basis: A set B = {b1, . . . ,bn} ⊆ V is called an orthogonal basis, if
any pair of basis vectors is orthogonal, i.e., ⟨bi,bj⟩ = 0, for i ̸= j. If additionally all vectors have
unit norm ∥bi∥=1, for all i, then B is called an orthonormal basis.

Exercise: Let u =

(
1
i

)
and v =

(
i
1

)
be two-dimensional vectors in C2.

1. Compute their inner product ⟨u,v⟩.

2. Compute the norms ∥u∥ and ∥v∥ of the two vectors.

3. Are u and v linearly independent?

Problem 3 (Linear operators). Recall that a complex-valued matrix A ∈ Cm×n is a linear operator
A : Cn → Cm that acts on the vector space V = Cn; concretely, this means that, for any scalars α, β ∈ C,
and any pair of vectors u,v ∈ Cn, it has the property that

A · (αu+ βv) = α ·A · u+ β ·A · v.

Note that the same linearity property also extends to more general linear combinations of vectors in Cn.
One important fact about linear operators is that they are completely determined by their action on a

particular basis of the underlying vector space. We will now see why this is the case. Suppose that we fix a
basis B = {b1, . . . ,bn} of Cn (not necessarily the canonical basis). We want to show that A ∈ Cm×n is
completely specified by how it transforms the set of basis elements:

b1 7→ A · b1, b2 7→ A · b2, · · · , bn 7→ A · bn.

Because we fixed a particular basis B, we can now write every vector v ∈ Cn as a linear combination

v = λ1b1 + λ2b2 + · · ·+ λnbn

for some λ1, . . . , λn ∈ C. By using the linearity of A : Cn → Cm, we can expand this as follows:

A · v = A · (λ1b1 + λ2b2 + · · ·+ λnbn)

= λ1 ·A · b1︸ ︷︷ ︸+λ2 ·A · b2︸ ︷︷ ︸+ · · ·+ λn ·A · bn︸ ︷︷ ︸ .
Thus, we can completely represent the action of any linear operator A : Cn → Cm by recording the vectors

Ab1, Ab2, · · · , Abn.

The canonical basis {e1, . . . , en} is a convenient choice, since we can very easily see that Aei = ai for

A =

 | | |
a1 a2 · · · an
| | |

 .

Once again, each column vector ai precisely represents the action of A : Cn → Cm on the i-th basis vector
of the canonical basis {e1, . . . , en}.

In class, we will often use the following properties of complex-valued matrices A ∈ Cm×n:

4



• Complex conjugate of a matrix: For matrices, complex conjugation is applied element-wise:

A =


a11 a12 a1n
a21 a22 · · · a2n

...
...

...
...

am1 am2 · · · amn

 7→ A =


ā11 ā12 ā1n
ā21 ā22 · · · ā2n

...
...

...
...

ām1 ām2 · · · āmn

 .

• Transpose of a matrix: The matrix transpose is given by the operation:

A =


a11 a12 a1n
a21 a22 · · · a2n

...
...

...
...

am1 am2 · · · amn

 7→ A⊺ =


a11 a21 · · · am1

a12 a22 · · · am2
...

...
...

...
a1n a2n · · · amn

 .

Notice that the dimensions are now flipped: an m× n matrix becomes an n×m matrix.

• Adjoint of a matrix: For matrices, the complex adjoint is defined as A† := (A )⊺. In other words, it
is the matrix we get by taking the complex conjugate, and then applying the transpose, i.e.,

A =


a11 a12 a1n
a21 a22 · · · a2n

...
...

...
...

am1 am2 · · · amn

 7→ A† =


ā11 ā21 · · · ām1

ā12 ā22 · · · ām2
...

...
...

...
ā1n ā2n · · · āmn


Exercises: Suppose that that B = {b1, . . . ,bn} is an arbitrary orthonormal basis of Cn.

1. Show that the basis B has the property that ⟨bi,bj⟩ = δi,j , where δi,j is the Kronecker delta which is
equal to 1, if i = j, and equal to 0, if i ̸= j.

2. Show that any vector v ∈ Cn can be written as

v =

n∑
i=1

⟨bi,v⟩ · bi.

Hint: To see this, expand the vector v ∈ Cn as a linear combination of basis vectors in B, i.e., let
v = λ1b1 + λ2b2 + · · ·+ λnbn for some λ1, . . . , λn ∈ C. Plug in this expansion on both sides and
use the properties of the inner product ⟨·, ·⟩ to convince yourself that the two sides are equivalent.

3. Show that any matrix A ∈ Cn×n can be compactly written as

A =

n∑
i,j=1

⟨bi,Abj⟩ · bi · b†
j .

Hint: Try to check what happens when you hit the matrix A from the right with any vector v ∈ Cn

written as a linear combination v = λ1b1+λ2b2+ · · ·+λnbn for some coefficients λ1, . . . , λn ∈ C.
Check that both sides of the equation give the same result.
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Problem 4 (Eigenvalues and Eigenvectors). Let A ∈ Cn×n be a (square) matrix. A nonzero vector
v ∈ Cn is called an eigenvector of A if there exists a scalar λ ∈ C such that

A · v = λ · v.

The scalar λ is called an eigenvalue of A. Note that A ∈ Cn×n can have at most n distinct eigenvalues.
The set of eigenvalues can be obtained by solving the characteristic equation

det(A− λ · In) = 0,

where In is the n× n identity matrix.
We often encounter 2-dimensional complex matrices where the determinant has an especially simple

form. Suppose that M ∈ C2×2 is a 2-dimensional matrix such that

M =

(
a b
c d

)
.

Then, the determinant is given by the formula

det(M) = ad− bc.

Next, we explain how to find eigenvectors. For each eigenvalue λ, the corresponding eigenvectors are
found by solving the corresponding equation

(A− λ · In) · v = 0.

Remark 1. Check page 7 for an example of how to calculate both eigenvalues and eigenvectors.

The following set of exercises will help you practice how to calculate and find both eigenvalues and
eigenvectors for two 2-dimensional matrices.

Exercises: Let X =

(
0 1
1 0

)
∈ C2×2 and H =

(
1√
2

1√
2

1√
2

− 1√
2

)
∈ C2×2.

1. Find the eigenvalues and eigenvectors of X.

2. Find the eigenvalues and eigenvectors of H.

3. Does H commute with X, i.e., XH = HX?

4. Let A,B ∈ Cn×n be an arbitrary pair of anti-commuting matrices such that AB = −BA.
Show that if they share a common eigenvector, then one of the respective eigenvalues must be 0.
Hint: Check what happens when you hit both AB and BA with the common eigenvector.
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Example: Eigenvalues and eigenvectors of a complex 2× 2 matrix

Consider the 2-dimensional complex matrix

A =

(
1 i
−i 1

)
∈ C2×2.

• Step 1: Characteristic polynomial. The eigenvalues are obtained by solving

det(A− λ · I2) = 0.

Here, we first need to compute

A− λ · I2 =

(
1− λ i
−i 1− λ

)
.

Next, evaluating the determinant we can see that

det(A− λ · I2) = (1− λ)(1− λ)− (i · −i).

Since i · (−i) = −i2 = 1, we get
det(A− λ · I2) = (1− λ)2 − 1.

Expanding everything, we find

(1− λ)2 − 1 = (λ2 − 2λ+ 1)− 1 = λ2 − 2λ.

So the characteristic equation is precisely given by λ2 − 2λ = 0.

• Step 2: Solve for eigenvalues.

λ(λ− 2) = 0 ⇒ λ1 = 0, λ2 = 2.

• Step 3: Find eigenvectors.

First, for λ1 = 0, we need to solve: (
1 i
−i 1

)(
v1
v2

)
=

(
0
0

)
.

This gives v1 + iv2 = 0 and −iv1 + v2 = 0. Both reduce to v1 = −iv2. So an eigenvector is

v(1) =

(
−i
1

)
.

Next, for λ2 = 2, we need to solve (
−1 i
−i −1

)(
v1
v2

)
=

(
0
0

)
.

This gives −v1 + iv2 = 0 and −iv1 − v2 = 0. Both reduce to v1 = iv2. So an eigenvector is

v(2) =

(
i
1

)
.

Final Result: The matrix A has eigenvalues λ1 = 0 and λ2 = 2, and eigenvectors v(1) and v(2), as above.
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