
CS 599 P1: Introduction to Quantum Computation Boston University
Instructor: Alexander Poremba Fall 2025

PRACTICE WORKSHEET #2

This is the second practice worksheet—it will not be graded and is meant to help you practice the tensor
product notation, as well as quantum measurements. I encourage you to work through these problems by
Tuesday, September 23rd—before the next homework assignment is out. Solutions will be posted 09/21.

Background: Tensor product. Let HA and HB be two Hilbert spaces, e.g. HA = C2 and HB = C2.
For any |ψ⟩ , |ψ1⟩ , |ψ2⟩ ∈ HA, |ϕ⟩ , |ϕ1⟩ , |ϕ2⟩ ∈ HB , and α, β ∈ C, the tensor product ⊗ satisfies:

• Linearity in the first argument:

(α |ψ1⟩A + β |ψ2⟩A)⊗ |ϕ⟩B = α |ψ1⟩A ⊗ |ϕ⟩B + β |ψ2⟩A ⊗ |ϕ⟩B .

• Linearity in the second argument:

|ψ⟩A ⊗ (α |ϕ1⟩B + β |ϕ2⟩B) = α |ψ⟩A ⊗ |ϕ1⟩B + β |ψ⟩A ⊗ |ϕ2⟩B .

• Scalars factor out:
(α |ψ⟩A)⊗ |ϕ⟩B = α (|ψ⟩A ⊗ |ϕ⟩B).

• Zero vector identity:
0A ⊗ |ϕ⟩B = 0AB = |ψ⟩A ⊗ 0B.

Problem 1 (Two-qubit tensor products). Recall that a two-qubit state lives in a tensor product space
C2 ⊗ C2, which has a computational basis consisting of four basis states

{|0⟩ ⊗ |0⟩ , |0⟩ ⊗ |1⟩ , |1⟩ ⊗ |0⟩ , |1⟩ ⊗ |1⟩}.

In this practice exercise, you are asked to express each of the following set of two-qubit states as a complex
linear combination of the four basis vectors above.

1. Expand the two-qubit state (
1√
2
|0⟩ − i√

2
|1⟩

)
⊗ |0⟩ .

2. Expand the two-qubit state
|1⟩ ⊗

(√
3
2 |0⟩+ 1

2 |1⟩
)
.

3. Expand the two-qubit state (
1√
3
|0⟩+

√
2√
3
|1⟩

)
⊗
(

1√
2
|0⟩ − i√

2
|1⟩

)
.

Hint: Try to expand one qubit at a time, using linearity in the tensor product.
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Problem 2 (Two-qubit gates). In this exercise, you will practice how to two-qubit gates on the tensor
product space C2 ⊗ C2. Specifically, you will use the following set of gates:

CNOT |a, b⟩ = |a, a⊕ b⟩ ,
CZ |a, b⟩ = (−1)a·b |a, b⟩ ,

SWAP |a, b⟩ = |b, a⟩ .

For brevity, we use denote the basis of the product space C2 ⊗ C2 via {|0, 0⟩ , |0, 1⟩ , |1, 0⟩ , |1, 1⟩}.

1. Apply the CNOT gate to the state (
1√
2
|0⟩ − i√

2
|1⟩

)
⊗ |0⟩ .

Expand the resulting state in the basis {|0, 0⟩ , |0, 1⟩ , |1, 0⟩ , |1, 1⟩}.

2. Apply the Controlled-Z (CZ) gate to the state

|+⟩ ⊗ |1⟩ , where |+⟩ = 1√
2
(|0⟩+ |1⟩).

Expand the resulting state in the computational basis.

3. Apply the SWAP gate to the state
1√
2

(
|01⟩ − i |10⟩

)
.

Expand the resulting state.

Problem 3 (Two-qubit measurements) In this exercise, we will consider measurements which take place
in either the computational basis {|0⟩ , |1⟩} or the Hadamard basis {|+⟩ , |−⟩}, where |±⟩ = 1√

2
(|0⟩ ± |1⟩).

Consider the following two-qubit entangled state

|Ψ+⟩ =
|01⟩+ |10⟩√

2
.

1. Measure both qubits in the computational basis {|00⟩ , |01⟩ , |10⟩ , |11⟩}. List each outcome, its prob-
ability, and the resulting measurement operators in the form of orthogonal projectors. What is the
post-measurement state for each possible outcome?

2. Measure only the first qubit in the Hadamard basis {|+⟩ , |−⟩}, leaving the second qubit unmeasured.
For each outcome “+” or “−”, list its probability and the measurement operators in the form of
orthogonal projectors. What does the post-measurement state look like for each outcome? What is
the conditional state of the second qubit?

3. Measure the first qubit in the computational basis and the second qubit in the Hadamard basis simulta-
neously. For each of the four possible outcomes {0,+}, {0,−}, {1,+}, {1,−}, list their probability
and the corresponding measurement operators in the form of orthogonal projectors. What is the renor-
malized post-measurement state for each outcome?

Hint: You may find it useful to expand |Ψ+⟩ by replacing the {|0⟩ , |1⟩} basis vectors of the second qubit as
linear combinations of the {|+⟩ , |−⟩} basis vectors (see Homework #1).

Recall also that measuring a single qubit of a two-qubit state, in general, results in a re-normalized
post-measurement state (see measurement axiom in Lecture 4).
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Problem 4 (Entangled states are not product states) Entanglement is a fundamental feature of quantum
mechanics: some quantum states of multiple qubits cannot be expressed as a product of single-qubit states.
In this exercise, we show that the standard Bell pair is genuinely entangled.

Consider the Bell state
|Φ+⟩ = 1√

2
(|00⟩+ |11⟩).

1. Suppose (for contradiction) that |Φ+⟩ can be written as a product of two single-qubit states,

|Φ+⟩ = (α |0⟩+ β |1⟩)⊗ (γ |0⟩+ δ |1⟩),

with complex numbers α, β, γ, δ satisfying normalization conditions. Write out the right-hand side
explicitly in the computational basis.

2. By comparing coefficients of |00⟩ , |01⟩ , |10⟩ , |11⟩, show that no choice of α, β, γ, δ can reproduce
the amplitudes of |Φ+⟩.

3. Conclude that |Φ+⟩ cannot be expressed as a product state, and therefore is entangled.

Problem 5 (Quantum no-cloning theorem) One of the most surprising results in quantum information
is that an arbitrary unknown quantum state cannot be copied perfectly. This is known as the no-cloning
theorem. It has profound implications: it protects quantum cryptography, forbids faster-than-light signaling
via entanglement, and fundamentally distinguishes quantum information from classical information.

1. Assume that there exists a universal unitary operator U that can clone arbitrary single-qubit states.
That is, for any qubit state |ψ⟩ and a fixed blank state |0⟩, the unitary satisfies

U
(
|ψ⟩ ⊗ |0⟩

)
= |ψ⟩ ⊗ |ψ⟩ .

2. Check that such a unitary would correctly clone the basis states |0⟩ and |1⟩:

U
(
|0⟩ ⊗ |0⟩

)
= |0⟩ ⊗ |0⟩ , U

(
|1⟩ ⊗ |0⟩

)
= |1⟩ ⊗ |1⟩ .

3. Now consider the superposition state |+⟩ = 1√
2
(|0⟩+ |1⟩). Compute what U(|+⟩ ⊗ |0⟩) would give,

assuming linearity of U . Compare this to the desired cloned state |+⟩ ⊗ |+⟩.

4. Show that these two outcomes do not yield the same state. Explain why this means that no such
unitary U can exist.
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