
CS 599 P1: Introduction to Quantum Computation Boston University
Instructor: Alexander Poremba Fall 2025

PRACTICE WORKSHEET #3

This is the third practice worksheet—it will not be graded and is meant to help you practice the quantum
circuit model, as well as simple quantum algorithms. I encourage you to work through these problems by
Tuesday, October 7th—before the next homework assignment is out.

Problem 1 (Quantum SWAP Test). In this exercise, we will study the so-called SWAP test, a simple
but powerful quantum circuit that can be used to estimate the fidelity (or closeness) between two unknown
quantum states. This is a notion you previously encountered in the first homework assignment.

• Fidelity. Let us consider two single-qubit states

|ϕ⟩ = α |0⟩+ β |1⟩ , |ψ⟩ = γ |0⟩+ δ |1⟩ ,

where α, β, γ, δ ∈ C are amplitudes such that |α|2 + |β|2 = 1 and |γ|2 + |δ|2 = 1.

We define the fidelity between two pure states |ϕ⟩ and |ψ⟩ as

F (ϕ, ψ) = | ⟨ϕ|ψ⟩ |2.

• The SWAP gate. The two-qubit SWAP gate exchanges the states of its two input qubits:

SWAP |x⟩ |y⟩ = |y⟩ |x⟩ , for x, y ∈ {0, 1}.

where we used that the two-qubit Hilbert space C2 ⊗ C2 has four logical basis states

{|0⟩ |0⟩ , |0⟩ |1⟩ , |1⟩ |0⟩ , |1⟩ |1⟩}.

• The controlled-SWAP (Fredkin) gate. The three-qubit controlled-SWAP gate (also called the
Fredkin gate) applies the SWAP operation on the last two qubits (targets) if and only if the first qubit
(control) is in the state |1⟩. Formally, if we write a general three-qubit computational basis state as

|c⟩ |x⟩ |y⟩ , c, x, y ∈ {0, 1},

then the controlled-SWAP acts as

cSWAP |c⟩ |x⟩ |y⟩ =

|0⟩ |x⟩ |y⟩ , if c = 0,

|1⟩ |y⟩ |x⟩ , if c = 1.

where the three-qubit Hilbert space C2 ⊗ C2 ⊗ C2 has 8 logical basis states

{|000⟩ , |001⟩ , |010⟩ , |011⟩ , |100⟩ , |101⟩ , |110⟩ , |111⟩}.

In the SWAP test, we apply a controlled-SWAP (also called a Fredkin gate): a three-qubit gate that
applies a SWAP on two target qubits only if the control qubit is in the state |1⟩.
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The SWAP test uses one ancilla qubit and two input states |ϕ⟩ and |ψ⟩ and consists of the following circuit:

|0⟩ H H

|ϕ⟩

|ψ⟩

1 2 3

where the three-qubit gate between steps 1 and 2 is the controlled-SWAP gate.

Exercises:

1. Write down the three-qubit state |ψ0⟩ before any gates are applied.

2. Apply the Hadamard gate to the ancilla qubit. Write the joint three-qubit state |ψ1⟩ explicitly.

3. Show that the state in the second step can be written as

|ψ2⟩ =
1√
2

(
|0⟩ ⊗ |ϕ⟩ ⊗ |ψ⟩ + |1⟩ ⊗ |ψ⟩ ⊗ |ϕ⟩

)
.

4. Apply the Hadamard gate to the ancilla qubit, and write out |ψ3⟩ explicitly.

5. Compute the probability that the measurement outcome of the ancilla qubit is 0. Show that it is

Pr

[
= |0⟩

]
=

1

2

(
1 + | ⟨ϕ|ψ⟩ |2

)
.

6. Suppose you had many identical copies of |ψ⟩ and |ϕ⟩. Explain how you can repeatedly use the SWAP
test in order to estimate the fidelity to within arbitrary precision.

Hint: Explain how you can get a good estimate for the probability that the SWAP Test returns |0⟩.
Then, using that, explain how you can obtain an estimate for the fidelity.

7. Recall that in Homework #1 you encountered the family of states

|ψ(θ)⟩ = 1√
2

(
|0⟩+ eiθ |1⟩

)
for θ ∈ [0, 2π). Suppose we want to estimate the fidelity between |ψ(θ)⟩ and the Hadamard-basis
state |+⟩. Use the SWAP test to derive the measurement probability Pr

[
= |0⟩

]
in this case,

and compare it with the fidelity F (θ) that you computed directly in Homework #1.
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Problem 2 (Bernstein–Vazirani Algorithm). In this exercise, we will study the Bernstein–Vazirani al-
gorithm, one of the first examples of a quantum algorithm that outperforms any classical deterministic
algorithm. This particular algorithm allows us to identify a hidden bit string encoded in a linear Boolean
function using only a single quantum query.

• The problem. Let s = s1s2 . . . sn ∈ {0, 1}n be an unknown n-bit string. Define a Boolean function
fs : {0, 1}n → {0, 1} as

fs(x) = ⟨s, x⟩ mod 2 = s1x1 ⊕ s2x2 ⊕ · · · ⊕ snxn,

where x = x1x2 . . . xn and ⊕ denotes addition modulo 2. The goal is to determine s.

• Classical approach. Classically, determining s would require n queries to fs, each querying fs(ei)
for the i-th basis vector ei. Quantumly, we can find s in one query.

• Quantum oracle. The function fs is implemented as a quantum oracle Ufs acting on n+ 1 qubits:

Ufs |x⟩ |y⟩ = |x⟩ |y ⊕ fs(x)⟩ , x ∈ {0, 1}n, y ∈ {0, 1}.

The Bernstein–Vazirani algorithm uses n qubits initialized to |0⟩⊗n and one ancilla qubit initialized to |1⟩:

|0⟩⊗n
H⊗n

Uf

H⊗n

|1⟩ H H

1 2 3

Here Ufs acts as the oracle on the n input qubits and the ancilla.

Exercises:

1. Write down the initial (n+ 1)-qubit state |ψ0⟩ before any gates are applied.

2. Write the state |ψ1⟩ explicitly as a superposition over all x ∈ {0, 1}n.

3. Apply the oracle Ufs . Show that the state |ψ2⟩ can be written as

|ψ2⟩ =
1√
2n

∑
x∈{0,1}n

(−1)⟨s,x⟩ |x⟩ ⊗ |0⟩ − |1⟩√
2

.

4. Apply Hadamard gates to the first n qubits again. Show that the resulting state is

|ψ3⟩ = |s⟩ ⊗ |0⟩ − |1⟩√
2

.

5. Compute the probability of measuring each of the first n qubits. Explain why the measurement di-
rectly reveals the hidden string s.

6. Work out the special case n = 3 and s = 101. Write explicitly each step of the state evolution and
show that the measurement outcome of the first three qubits gives s.
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