CS 599 P1: Introduction to Quantum Computation

Instructor: Alexander Poremba

Boston University Fall 2025

PRACTICE WORKSHEET #3

This is the third practice worksheet—it will not be graded and is meant to help you practice the quantum circuit model, as well as simple quantum algorithms. I encourage you to work through these problems by **Tuesday, October 7th**—before the next homework assignment is out.

Problem 1 (Quantum SWAP Test). In this exercise, we will study the so-called *SWAP test*, a simple but powerful quantum circuit that can be used to estimate the *fidelity* (or closeness) between two unknown quantum states. This is a notion you previously encountered in the first homework assignment.

• Fidelity. Let us consider two single-qubit states

$$\left|\phi\right\rangle = \alpha \left|0\right\rangle + \beta \left|1\right\rangle, \quad \left|\psi\right\rangle = \gamma \left|0\right\rangle + \delta \left|1\right\rangle,$$

where $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ are amplitudes such that $|\alpha|^2 + |\beta|^2 = 1$ and $|\gamma|^2 + |\delta|^2 = 1$.

We define the *fidelity* between two pure states $|\phi\rangle$ and $|\psi\rangle$ as

$$F(\phi, \psi) = |\langle \phi | \psi \rangle|^2$$
.

• The SWAP gate. The two-qubit SWAP gate exchanges the states of its two input qubits:

SWAP
$$|x\rangle |y\rangle = |y\rangle |x\rangle$$
, for $x, y \in \{0, 1\}$.

where we used that the two-qubit Hilbert space $\mathbb{C}^2 \otimes \mathbb{C}^2$ has four logical basis states

$$\{|0\rangle |0\rangle, |0\rangle |1\rangle, |1\rangle |0\rangle, |1\rangle |1\rangle\}.$$

• The controlled-SWAP (Fredkin) gate. The three-qubit controlled-SWAP gate (also called the *Fredkin gate*) applies the SWAP operation on the last two qubits (targets) if and only if the first qubit (control) is in the state $|1\rangle$. Formally, if we write a general three-qubit computational basis state as

$$|c\rangle |x\rangle |y\rangle$$
, $c, x, y \in \{0, 1\}$,

then the controlled-SWAP acts as

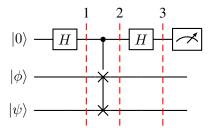
$$\text{CSWAP} \left| c \right\rangle \left| x \right\rangle \left| y \right\rangle = \begin{cases} \left| 0 \right\rangle \left| x \right\rangle \left| y \right\rangle, & \text{if } c = 0, \\ \left| 1 \right\rangle \left| y \right\rangle \left| x \right\rangle, & \text{if } c = 1. \end{cases}$$

where the three-qubit Hilbert space $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ has 8 logical basis states

$$\{|000\rangle, |001\rangle, |010\rangle, |011\rangle, |100\rangle, |101\rangle, |110\rangle, |111\rangle\}.$$

In the SWAP test, we apply a *controlled-SWAP* (also called a Fredkin gate): a three-qubit gate that applies a SWAP on two target qubits only if the control qubit is in the state $|1\rangle$.

The SWAP test uses one ancilla qubit and two input states $|\phi\rangle$ and $|\psi\rangle$ and consists of the following circuit:



where the three-qubit gate between steps 1 and 2 is the controlled-SWAP gate.

Exercises:

- 1. Write down the three-qubit state $|\psi_0\rangle$ before any gates are applied.
- 2. Apply the Hadamard gate to the ancilla qubit. Write the joint three-qubit state $|\psi_1\rangle$ explicitly.
- 3. Show that the state in the second step can be written as

$$|\psi_2\rangle = \frac{1}{\sqrt{2}} \Big(|0\rangle \otimes |\phi\rangle \otimes |\psi\rangle + |1\rangle \otimes |\psi\rangle \otimes |\phi\rangle \Big).$$

- 4. Apply the Hadamard gate to the ancilla qubit, and write out $|\psi_3\rangle$ explicitly.
- 5. Compute the probability that the measurement outcome of the ancilla qubit is 0. Show that it is

$$\Pr\left[\boxed{} \right] = |0\rangle \right] = \frac{1}{2} \left(1 + |\langle \phi | \psi \rangle|^2 \right).$$

6. Suppose you had many identical copies of $|\psi\rangle$ and $|\phi\rangle$. Explain how you can repeatedly use the SWAP test in order to estimate the fidelity to within arbitrary precision.

Hint: Explain how you can get a good estimate for the probability that the SWAP Test returns $|0\rangle$. Then, using that, explain how you can obtain an estimate for the fidelity.

7. Recall that in Homework #1 you encountered the family of states

$$|\psi(\theta)\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{i\theta} |1\rangle \right)$$

for $\theta \in [0, 2\pi)$. Suppose we want to estimate the fidelity between $|\psi(\theta)\rangle$ and the Hadamard-basis state $|+\rangle$. Use the SWAP test to derive the measurement probability $\Pr\Big[\Longrightarrow |0\rangle \Big]$ in this case, and compare it with the fidelity $F(\theta)$ that you computed directly in Homework #1.

Problem 2 (Bernstein–Vazirani Algorithm). In this exercise, we will study the Bernstein–Vazirani algorithm, one of the first examples of a quantum algorithm that outperforms any classical deterministic algorithm. This particular algorithm allows us to identify a hidden bit string encoded in a linear Boolean function using only a single quantum query.

• The problem. Let $s = s_1 s_2 \dots s_n \in \{0, 1\}^n$ be an unknown n-bit string. Define a Boolean function $f_s : \{0, 1\}^n \to \{0, 1\}$ as

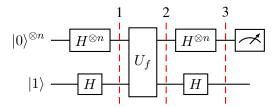
$$f_s(x) = \langle s, x \rangle \mod 2 = s_1 x_1 \oplus s_2 x_2 \oplus \cdots \oplus s_n x_n,$$

where $x = x_1 x_2 \dots x_n$ and \oplus denotes addition modulo 2. The goal is to determine s.

- Classical approach. Classically, determining s would require n queries to f_s , each querying $f_s(e_i)$ for the i-th basis vector e_i . Quantumly, we can find s in *one query*.
- Quantum oracle. The function f_s is implemented as a quantum oracle U_{f_s} acting on n+1 qubits:

$$U_{f_s}|x\rangle|y\rangle = |x\rangle|y \oplus f_s(x)\rangle, \quad x \in \{0,1\}^n, \ y \in \{0,1\}.$$

The Bernstein–Vazirani algorithm uses n qubits initialized to $|0\rangle^{\otimes n}$ and one ancilla qubit initialized to $|1\rangle$:



Here U_{fs} acts as the oracle on the n input qubits and the ancilla.

Exercises:

- 1. Write down the initial (n+1)-qubit state $|\psi_0\rangle$ before any gates are applied.
- 2. Write the state $|\psi_1\rangle$ explicitly as a superposition over all $x \in \{0,1\}^n$.
- 3. Apply the oracle U_{f_s} . Show that the state $|\psi_2\rangle$ can be written as

$$|\psi_2\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{\langle s,x\rangle} |x\rangle \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}}.$$

4. Apply Hadamard gates to the first n qubits again. Show that the resulting state is

$$|\psi_3\rangle = |s\rangle \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}}.$$

- 5. Compute the probability of measuring each of the first n qubits. Explain why the measurement directly reveals the hidden string s.
- 6. Work out the special case n=3 and s=101. Write explicitly each step of the state evolution and show that the measurement outcome of the first three qubits gives s.