CS 599 P1: Introduction to Quantum Computation Boston University
Instructor: Alexander Poremba Fall 2025

PRACTICE WORKSHEET #3

This is the third practice worksheet—it will not be graded and is meant to help you practice the quantum
circuit model, as well as simple quantum algorithms. I encourage you to work through these problems by
Tuesday, October 7th—before the next homework assignment is out.

Problem 1 (Quantum SWAP Test). In this exercise, we will study the so-called SWAP test, a simple
but powerful quantum circuit that can be used to estimate the fidelity (or closeness) between two unknown
quantum states. This is a notion you previously encountered in the first homework assignment.

* Fidelity. Let us consider two single-qubit states
¢) = a|0) + BI1), |h) =7]0)+4[1),

where «, 3,7, 9 € C are amplitudes such that |a|> + |32 = 1 and |v|? + [0]? = 1.
We define the fidelity between two pure states |¢) and |v)) as

F(¢,9) = | (ol¥) [*
* The SWAP gate. The two-qubit SWAP gate exchanges the states of its two input qubits:
SWAP |z) |y) = |y) |x), forz,y € {0,1}.
where we used that the two-qubit Hilbert space C? @ C? has four logical basis states
{10} 10),10) 1), [1) 0 , [1) 1)}

* The controlled-SWAP (Fredkin) gate. The three-qubit controlled-SWAP gate (also called the
Fredkin gate) applies the SWAP operation on the last two qubits (targets) if and only if the first qubit
(control) is in the state |1). Formally, if we write a general three-qubit computational basis state as

o) |z} ly), e 2y € {01},
then the controlled-SWAP acts as
0) |2) [y), ifc=0,
CSWAP |c) [z) |y) =
1) [y} |a), ife=1.
where the three-qubit Hilbert space C2 ® C? ® C? has 8 logical basis states

{1000) ,001) ,]010) , [011),,]100) , [101), [110) , 111} }.

In the SWAP test, we apply a controlled-SWAP (also called a Fredkin gate): a three-qubit gate that
applies a SWAP on two target qubits only if the control qubit is in the state |1).



The SWAP test uses one ancilla qubit and two input states |¢) and |1)) and consists of the following circuit:

where the three-qubit gate between steps 1 and 2 is the controlled-SWAP gate.

Exercises:

1.

2.

Write down the three-qubit state |¢)y) before any gates are applied.

Apply the Hadamard gate to the ancilla qubit. Write the joint three-qubit state |)1) explicitly.

. Show that the state in the second step can be written as

1

|¢2> = \ﬁ

(1@ le)ew) + 1) elw) @) ).

Apply the Hadamard gate to the ancilla qubit, and write out |i3) explicitly.

. Compute the probability that the measurement outcome of the ancilla qubit is 0. Show that it is

re =0 | = 31+ 10007),

Suppose you had many identical copies of |¢)) and |¢). Explain how you can repeatedly use the SWAP
test in order to estimate the fidelity to within arbitrary precision.

Hint: Explain how you can get a good estimate for the probability that the SWAP Test returns |0).
Then, using that, explain how you can obtain an estimate for the fidelity.

. Recall that in Homework #1 you encountered the family of states

1

[¥(0)) = 7

for 6 € [0,27). Suppose we want to estimate the fidelity between |¢(6)) and the Hadamard-basis
state |+). Use the SWAP test to derive the measurement probability Pr [ = |0) } in this case,

10y + ¢ 1))

and compare it with the fidelity F'(6) that you computed directly in Homework #1.



Problem 2 (Bernstein—Vazirani Algorithm). In this exercise, we will study the Bernstein—Vazirani al-
gorithm, one of the first examples of a quantum algorithm that outperforms any classical deterministic
algorithm. This particular algorithm allows us to identify a hidden bit string encoded in a linear Boolean
function using only a single quantum query.

* The problem. Let s = s183...5, € {0,1}" be an unknown n-bit string. Define a Boolean function
fs:{0,1}" — {0,1} as

fs(x) = (s,x) mod 2 = s121 B S92 B -+ - D SpTn,
where x = z123 . . . £, and & denotes addition modulo 2. The goal is to determine s.

¢ Classical approach. Classically, determining s would require n queries to f, each querying fs(e;)
for the i-th basis vector e;. Quantumly, we can find s in one query.

* Quantum oracle. The function f; is implemented as a quantum oracle Uy, acting on n + 1 qubits:

Ufs ‘x> |y> = |$> |y D fs(x» y T E {07 1}n7 Y€ {07 1}'

The Bernstein—Vazirani algorithm uses n qubits initialized to |0)*” and one ancilla qubit initialized to |1):
1 2 3
e A
Y| |
n—{rq A
| | |

Here Uy, acts as the oracle on the n input qubits and the ancilla.

Exercises:
1. Write down the initial (n 4 1)-qubit state |t)) before any gates are applied.
2. Write the state |1)1) explicitly as a superposition over all x € {0, 1}".

3. Apply the oracle Uy, . Show that the state [t)2) can be written as

_ 1 1\ (s,x) z ’0>_|1>
|1)2) ﬁme{%}n( 1)) | >®i\/5 .

4. Apply Hadamard gates to the first n qubits again. Show that the resulting state is
0) — 1)
V2

5. Compute the probability of measuring each of the first n qubits. Explain why the measurement di-
rectly reveals the hidden string s.

3) = [s) @

6. Work out the special case n = 3 and s = 101. Write explicitly each step of the state evolution and
show that the measurement outcome of the first three qubits gives s.



